Aplicação do Método VRFT para a Sintonia do Controle da Pressão de Alimentação de uma Extrusora Industrial

Autora: Carolina Sehnem Festugatto

Orientador: Prof. Dr. Pedro Rafael Bolognese Fernandes

Co-orientadora: Eng. M.Sc. Larissa Scherer Severo

Dezembro, 2018
Sumário

Agradecimentos .. iii
Resumo ... iv
Lista de Figuras .. v
Lista de Tabelas .. vi
Lista de Abreviaturas e Siglas ... vii
1. Introdução ... 1
 1.1 Motivação .. 1
 1.2 Objetivos ... 2
 1.3 Estrutura do trabalho .. 2
2. Revisão Bibliográfica ... 3
 2.1 Definições gerais ... 3
 2.2 Controle baseado em dados .. 7
 2.2.1 Função de custo .. 7
 2.2.2 Classe de controladores .. 8
 2.2.3 Modelo de referência ... 8
 2.2.4 Coleta de dados .. 8
 2.3 Método VRFT – *Virtual Reference Feedback Tuning* .. 9
3. Estudo de Caso .. 11
 3.1. Processo produtivo .. 11
 3.2 Instrumentação do tanque ... 12
 3.3 Particularidades operacionais ... 13
 3.4 Estratégia de controle regulatório ... 14
4. Metodologia .. 17
5. Resultados ... 19
6. Conclusões ... 25
7. Referências Bibliográficas .. 26
8. Anexo I ... 27
 8.1 Algoritmo VRFT (Matlab) .. 27
Agradecimentos

Agradeço aos meus pais, Airton e Daniela, pelas boas intenções de ajuda e por tornarem esse momento possível. A toda minha família, pela preocupação e por compreenderem os períodos de ausência. Ao Mateus, pelo carinho, pelo apoio nos momentos decisivos e por tornar esse período mais leve.

Ao Professor Pedro, pela ótima orientação deste trabalho, pelos incentivos, compreensão e por toda a disponibilidade em auxiliar, solucionando dúvidas e compartilhando ideias.

À equipe de Automação Sul da Braskem, pela incrível prontidão para solucionar dúvidas, sempre. Em especial à Larissa, pela ótima orientação, paciência, confiança e oportunidade de crescimento, e àqueles que também fizeram parte e acompanharam de perto o meu desenvolvimento pessoal e profissional, com ensinamentos, dicas e incentivos: Gustavo Neumann, Luciano Farina e Luiz Antônio Canal.

A todos os professores do Departamento de Engenharia Química, pelos ensinamentos e influência que tiveram neste trabalho, direta ou indiretamente. Em especial ao professor Nilo, pela paciência e oportunidade de crescimento durante os três anos e meio como orientador dos trabalhos de iniciação científica.
Resumo

Este trabalho tem como objetivo aplicar o método baseado em dados *Virtual Reference Feedback Tuning* (VRFT) através da determinação de parâmetros de sintonia para uma malha de controle de pressão, que é parte da estratégia de controle de nível na seção de extrusão de uma planta de polietileno de baixa densidade. Esta malha está relacionada tanto com segurança de processos quanto à qualidade do produto e opera em modo cascata, o que dificulta a obtenção de dados em malha aberta para identificação dos parâmetros do processo e, consequentemente, a sintonia. A aplicação do método VRFT permite a determinação de parâmetros para um controlador PI em malha fechada, através de um único experimento na planta. Dessa forma, foram utilizados dados reais do processo para testar a aplicabilidade do método, que se mostrou mais coerente na proposição dos parâmetros para o controlador quando aplicado para um conjunto de dados na forma de desvio. Além disso, o método mostrou potencial para ser aplicado com um conjunto de dados de uma malha de controle servo em cascata de um processo real, quando esta se encontra em automático e local.
Lista de Figuras

Figura 1 - Configuração de um sistema de controle feedback...3
Figura 2 - Diagrama de blocos de um sistema SISO em malha fechada..4
Figura 3 - Diagrama de blocos do sistema utilizado para gerar a referência virtual.................................10
Figura 4 - Diagrama de blocos simplificado do processo produtivo de PEBD a alta pressão.

...3
Figura 5 - Visão em corte do tanque de separação de baixa pressão. ..13
Figura 6 - Estratégia de controle do vaso de separação de BP. ..15
Figura 7 - Gráfico de tendência da pressão do vaso separador de BP, conjunto de dados I. 19
Figura 8 - Resultado da simulação da função de transferência com τ = 30s..20
Figura 9 - Resultado da simulação da função de transferência com τ = 60s..21
Figura 10 - Resultado da simulação da função de transferência com τ = 120s.21
Figura 11 - Gráfico de tendência da pressão do vaso separador de BP, conjunto de dados II.

..23
Aplicação do Método VRFT para a Sintonia do Controle da Pressão de Alimentação de uma Extrusora Industrial

Lista de Tabelas

Tabela 1 - Funções de transferência simuladas para escolha do modelo de referência. 20
Tabela 2 - Parâmetros obtidos através do VRFT para o conjunto de dados I, com a malha em cascata. 22
Tabela 3 - Parâmetros obtidos através do VRFT para o conjunto de dados I na forma de desvio. 23
Tabela 4 - Parâmetros obtidos para o conjunto de dados II, com a malha de pressão em automático e local. 24
Tabela 5 - Parâmetros obtidos para o conjunto de dados II, na forma de desvio. 24
Lista de Abreviaturas e Siglas

<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Alta pressão</td>
</tr>
<tr>
<td>BP</td>
<td>Baixa pressão</td>
</tr>
<tr>
<td>PD</td>
<td>Controlador Proporcional-Derivativo</td>
</tr>
<tr>
<td>PEBD</td>
<td>Polietileno de baixa densidade</td>
</tr>
<tr>
<td>PI</td>
<td>Controlador Proporcional-Integral</td>
</tr>
<tr>
<td>PID</td>
<td>Controlador Proporcional-Integral-Derivativo</td>
</tr>
<tr>
<td>PIMS</td>
<td>Plant Information Management System</td>
</tr>
<tr>
<td>SDCD</td>
<td>Sistema Digital de Controle Distribuído</td>
</tr>
<tr>
<td>SISO</td>
<td>Single-Input Single-Output</td>
</tr>
<tr>
<td>VRFT</td>
<td>Virtual Reference Feedback Tuning</td>
</tr>
</tbody>
</table>
1. Introdução

1.1 Motivação

O surgimento dos polímeros como material alternativo às matérias-primas convencionais foi de extrema importância para o desenvolvimento do ser humano. Tal relevância pode ser observada através dos crescentes avanços tecnológicos nas últimas décadas, com impacto direto em áreas como construção civil, alimentação, saúde e transporte.

Em geral, os polímeros são materiais leves, flexíveis e resistentes. A faixa ampla de variação de suas propriedades físicas e químicas permite que ele seja transformado e aplicado nas mais diversas formas. Por esse motivo, é muito utilizado em embalagens, aplicações médicas, tubulações na construção civil, peças na indústria automotiva, na indústria calçadista, etc. O polietileno é um dos polímeros mais estudados, ainda que seu processo já seja conhecido e consolidado.

O processo de síntese de polietileno pode ser feito a partir de diferentes tecnologias, sendo elas alta ou baixa pressão, em reatores tubulares ou fase gás. O tipo de processo influencia diretamente o modo de distribuição das cadeias do polímero, e é responsável por definir algumas propriedades importantes do mesmo, como densidade e viscosidade. O processo de síntese sob alta pressão foi descoberto em 1933 pela empresa britânica Imperial Chemical Industries, e estabelecido em 1935 por Michael Perrin, ao identificar as condições adequadas para a reação de polimerização do eteno. Desde então, estudos buscando novos pontos de operação, novas resinas e a maximização da produção do polímero com qualidades desejadas vem sendo constantemente realizados.

A qualidade do produto é um dos principais pontos a se buscar e manter em um processo produtivo. Na planta abordada neste trabalho, a variabilidade no controle do nível do tanque que recebe a resina polimérica e que alimentará o processo de extrusão em pellets é identificada como uma das causas de diminuição da qualidade do produto. Em um primeiro momento, propôs-se uma ação de melhoria na sintonia do controlador. Como a estratégia de controle deste sistema é uma malha cascata, a primeira sintonia a ser ajustada é a do controlador servo, que corresponde a uma malha de controle de pressão, a qual não pode ser operada em
modo manual devido aos riscos na segurança de processos e na própria qualidade do produto. Uma alternativa para realizar a sintonia em malha fechada é o projeto de controlador baseado em dados, o qual será aplicado neste trabalho através do método *Virtual Reference Feedback Tuning* (VRFT). A vantagem deste método é permitir a sintonia de um controlador a partir da especificação de um desempenho desejado em malha fechada diretamente a partir de dados de planta, sem a necessidade de uma etapa intermediária de identificação do modelo do processo.

1.2 Objetivos

O objetivo deste trabalho é propor uma sintonia para uma malha de pressão de uma planta de polietileno de baixa densidade através do método baseado em dados VRFT. Devido a restrições operacionais, essa malha não pode operar em modo manual, o que dificulta a identificação do ganho do processo, e consequentemente, dos parâmetros de sintonia do controlador. Por ser um método baseado em dados, o VRFT é uma alternativa para sintonia em malha fechada.

1.3 Estrutura do trabalho

No Capítulo 2, é apresentada a fundamentação teórica para aplicação do método VRFT. Inicialmente, são abordados conceitos gerais de malhas de controle *feedback* e controladores PID. Na sequência, é desenvolvida a lógica de aplicação de métodos de controle baseado em dados.

No Capítulo 3, é descrito o processo produtivo da unidade em que a malha de pressão abordada está inserida, bem como a estratégia de controle do sistema, suas restrições operacionais e particularidades do processo.

No Capítulo 4, é desenvolvida a metodologia do trabalho, além do detalhamento do algoritmo utilizado.

No Capítulo 5, são apresentados os resultados obtidos através da aplicação do método baseado em dados VRFT.

Por fim, no Capítulo 6, são desenvolvidas as conclusões e sugestões para trabalhos futuros.
2. Revisão Bibliográfica

Este capítulo visa fornecer o embasamento teórico para aplicação do método de controle baseado em dados VRFT. São necessários conhecimentos prévios à aplicação do método em uma malha de controle real da planta, tais como a escolha do modelo de referência e o padrão de coleta dos dados.

2.1 Definições gerais

O sistema de controle feedback está ilustrado na Figura 1, e opera alimentando o sinal da saída do processo de volta ao controlador. As ações que serão tomadas pelo controlador para regular o comportamento do processo são baseadas nas informações desse sinal de saída.

Na maioria dos casos, o cenário desejado para um sistema de controle é a manutenção do sinal de saída do processo o mais próximo possível da referência estipulada (set point). A propensão ao desvio entre os sinais de saída e referência do processo ocorre tanto devido à variabilidade do sinal do distúrbio (problema regulatório), quanto a mudanças no valor da referência (problema servo) (OGUNNAIKE e RAY, 1994). Independente da causa do desvio, a estratégia feedback é aplicada através dos seguintes passos:
1. Medidação do sinal de saída $y(t)$ do processo que se quer controlar, através de um sensor de medição;
2. Comparação da saída com a referência $r(t)$, sendo a diferença entre elas representada como um sinal de erro;
3. Utilização do sinal de erro como entrada do controlador $C(t, \rho)$, que, a partir do erro, gera uma ação de correção $u(t)$ que é transmitida para o elemento final de controle (ex.: válvula);
4. Ação do elemento final de controle para implementação da mudança proposta pelo controlador no processo;

Figura 2 - Diagrama de blocos de um sistema SISO em malha fechada.

A Figura 2 representa um diagrama de blocos típico de um sistema de controle feedback SISO, independentemente do processo, tipo de controlador, sensor ou elemento final de controle. É chamado “malha fechada” pelo simples motivo de o loop de controle estar fechado, ou seja, o controlador está conectado e transmitindo informações ao processo, que as transmite de volta ao controlador, continuamente. Um dos fatores relacionados à eficiência do sistema feedback para controlar o processo é o algoritmo do controlador.

O controlador Proporcional-Integral-Derivativo (PID) é atualmente o algoritmo de controle mais utilizado na indústria. Essa popularidade se deve principalmente à simplicidade no ajuste dos seus parâmetros para se obter um bom desempenho (CAMPOS e TEIXEIRA, 2006). De modo geral, o funcionamento desse controlador envolve a medição da variável controlada e o cálculo do erro entre esta e a referência, gerando uma resposta de correção baseada no erro proporcional, integral ou derivativo (YANG et al., 2016). A Equação (2.1) representa um controlador PID.
na forma paralela alternativa ideal, e pode ser descrita como a soma de três fatores: proporcional, integral e derivativo, respectivamente.

\[u(t) = K_p e(t) + K_i \int_0^t e(t) \, dt + \tau_D \frac{d}{dt} e(t) \quad (2.1) \]

Sendo

\[e(t) = y_{set}(t) - y(t) \quad (2.2) \]

\(e(t) \) o erro medido no tempo \(t \), \(y_{set}(t) \) o set point, \(y(t) \) a variável controlada, \(u(t) \) a saída do controlador, e \(K_p \), \(K_i \) e \(\tau_D \) o ganho proporcional, ganho integral e tempo derivativo, respectivamente. Em geral, o algoritmo de controle pode ser configurado como P, PI, PD ou PID, conforme o sistema que se deseja controlar.

2.1.1 Controlador Proporcional

Como o próprio nome sugere, esse controlador gera uma saída proporcional ao erro entre set point e variável controlada. A magnitude da ação do algoritmo de controle é calculada através de \(K_p \), conforme a Equação (2.3), como uma variação a partir do ponto atual.

\[\Delta u(t) = K_p \Delta e(t) \quad (2.3) \]

Portanto, se não houver variação no erro, não haverá variação na saída do controlador. Estes controladores permitem um erro em regime permanente (offset), ou seja, pode haver um ponto de equilíbrio onde exista um desvio entre o valor desejado e a variável a ser controlada, como destacam CAMPOS e TEIXEIRA (2006). Em grande parte das malhas de controle, um controlador com offset não representa um desempenho satisfatório para o processo, podendo esse erro ser eliminado a partir da inclusão do termo Integral, dependendo do tipo de sinal de referência considerado.

2.1.2 Controlador Integral

A ação de controle integral depende da integral do erro ao longo do tempo entre \(y_{set}(t) \) e \(y(t) \). Esse algoritmo de controle é muito utilizado devido à capacidade de eliminação do offset (SEBORG et al., 2004), vantagem que pode ser explicada através da análise do segundo termo (termo integral) da Equação (2.1):
para que o processo que se deseja controlar esteja em estado estacionário, a saída do controlador deve ser constante, o que só ocorre quando \(e(t) = 0 \). Portanto, a saída mantém-se sempre variando, até que o erro seja nulo. Essa ação de controle sempre ocorrerá, salvo casos em que há saturação do controlador, ou seja, o sinal enviado para a variável manipulada atinge um limite, e não é mais capaz de aproximar a variável controlada do set point.

O valor ajustado para o ganho integral \(K_i \) está relacionado com o número de repetições da ação do controlador por tempo.

\[
K_i = \frac{1}{T_i} \tag{2.4}
\]

Sendo \(T_i \) o tempo integral, em segundos ou em minutos. Embora a eliminação do offset seja um objetivo de controle importante, o controlador integral por si só é raramente utilizado, pois a magnitude da ação de controle aumenta conforme cresce o erro acumulado. Portanto, a ação só seria significativa após um longo período de tempo (SEBORG et al., 2004).

A ação de controle proporcional, em contrapartida, é imediata à detecção do erro. Sendo assim, é muito utilizada em conjunto com o termo integral, configurando o controlador PI. Uma desvantagem dessa combinação é que um possível ajuste ruim dos parâmetros do controlador acarreta na redução da robustez da malha de controle devido à oscilação excessiva da variável controlada. Esta situação pode ser minimizada melhorando a sintonia, ou ainda incluindo no algoritmo a ação de controle derivativa (SEBORG et al., 2004).

2.1.3 Controlador Derivativo

A ação de controle derivativa tem uma função de antecipação, e surgiu para facilitar o controle e evitar oscilações em processos com dinâmica lenta (CAMPOS e TEIXEIRA, 2006). Ela baseia-se na taxa de variação do erro para antecipar a ação de correção da variável controlada, e está representada pela Equação (2.5). Quanto maior a taxa de variação do erro, maior o sinal de saída do controlador.

\[
u(t) = \tau_d \frac{d}{dt} e(t) \tag{2.5}
\]
Quando o erro é constante, tem-se $de/dt = 0$, o que torna a ação do controlador nula. Por esse motivo, o termo derivativo nunca é utilizado sozinho (SEBORG et al., 2004). Apesar de ser utilizada para atenuar o efeito oscilatório provocado pela ação integral, a ação derivativa não é recomendada para malhas cuja variável controlada apresenta ruído excessivo.

2.2 Controle baseado em dados

Os métodos de controle baseado em dados são indicados para casos em que não se tem o modelo da planta que se quer controlar, cenário bastante comum em processos industriais. De forma geral, para a aplicação deste tipo de método, é necessário escolher a classe de controlador e o modelo de referência, coletar dados da planta, e escolher o procedimento para minimizar uma função custo.

2.2.1 Função de custo

O sistema em malha fechada da Figura 2 pode ser representado no domínio discreto pela função complementar de sensibilidade:

$$T(z, \rho) = \frac{C(z, \rho)G_0(z)}{1 + C(z, \rho)G_0(z)} \quad (2.6)$$

onde ρ é um vetor de parâmetros do controlador. A saída em malha fechada, será dada, portanto, por

$$y(t_k, \rho) = T(z, \rho)r(t_k) + D(z, \rho)v(t_k), \quad (2.7)$$

sendo $D(z, \rho)$ e $v(t)$ a função de transferência e o sinal do distúrbio, respectivamente.

O objetivo de controle pode ser definido em função da resposta que se deseja para um sistema em malha fechada. Dessa forma, a função custo é utilizada para definir o desempenho desse controlador. Em (BAZANELLA et al., 2012), a função de custo utiliza a norma quadrática entre a resposta real do sistema em malha fechada e a resposta desejada, representada pela equação:

$$J_y(\rho) = \frac{1}{N} \sum_{t_k=1}^{N} [y(t_k, \rho) - y_d(t_k)]^2 \quad (2.8)$$

Onde a resposta desejada em malha fechada é dada por
\[y_d(t_k) = T_d(z)r(t_k) \] (2.9)

\(T_d(z) \) é a função de transferência que representa o comportamento desejado da resposta do sistema, ou “modelo de referência”.

2.2.2 Classe de controladores

Um dos primeiros passos para aplicação de um método baseado em dados é a definição da classe de modelos de controladores. Uma vez definida a classe, os parâmetros que melhor otimizam a função custo são escolhidos para compor o controlador projetado. Os controladores lineares nos parâmetros são aqueles dados por:

\[C(z, \rho) = \rho^T \beta(z), \rho \in \mathbb{R}^p \] (2.10)

Sendo \(\beta(z) \) um vetor coluna de funções de transferência, e \(\rho^T \) um vetor de parâmetros que define o ganho e a posição dos polos e zeros ajustáveis do controlador. A utilização de um controlador linear nos parâmetros facilita a resolução do problema de minimização da função custo. Para um controlador PI discreto, por exemplo, tem-se:

\[\rho^T = [k_p \ k_i] \] (2.11)

\[\beta(z) = \begin{bmatrix} 1 \ rac{1}{z-1} \end{bmatrix}^T \] (2.12)

2.2.3 Modelo de referência

Aqui é definida a função de transferência que descreve o comportamento desejado para o sistema em malha fechada. A escolha do modelo de referência é um ponto crítico do método baseado em dados, pois, se mal feita, pode levar à instabilidade do sistema quando colocado em malha fechada com o controlador obtido pela minimização da função custo (BAZANNELA, 2012).

2.2.4 Coleta de dados

A coleta de dados da planta pode ser realizada em malha aberta ou em malha fechada. Em malha aberta, os dados podem ser coletados a partir de um teste de resposta a degrau, aplicando-se uma variação na entrada \(u(t) \) e medindo-se os
valores na saída $y(t)$ da planta. Em malha fechada, como já há um controlador, o método de controle baseado em dados irá calcular novos valores para os parâmetros existentes.

2.2.5 Controlador ideal

O controlador que torna o comportamento do sistema igual ao comportamento determinado pelo modelo de referência (T_d) é chamado de controlador ideal, e pode ser representado por:

$$C_d(z) = \frac{T_d(z)}{G_0(z)(1-T_d(z))} \quad (2.13)$$

Para este caso, observa-se que o controlador ideal depende do modelo real do processo. Assim, se $G_0(z)$ for conhecida, e o controlador não tiver restrições quanto à sua estrutura (não for de ordem elevada), $C_d(z)$ pode ser calculado diretamente pela Equação (2.1).

Em casos onde não é possível obter o modelo da planta, como em alguns processos industriais, os parâmetros do controlador são obtidos através da otimização de uma função custo. Por esse método, o controlador ideal é aquele que anula a função custo ($J_y(\rho^*) = 0$), sendo ρ^* o vetor dos parâmetros que tornam o controlador existente o controlador ideal.

2.3 Método VRFT – Virtual Reference Feedback Tuning

O VRFT é um método de sintonia baseado em dados, proposto por CAMPI et al. (2002), que permite a determinação de parâmetros para um controlador PID em malha fechada, sem a necessidade do modelo da planta. Para sua formulação, assume-se um sistema SISO, de tempo discreto, linear e invariante no tempo, descrito pela função de transferência $G_0(z)$, desconhecida.

Para aplicação do método, é necessário um único e representativo experimento na planta, para obtenção de um conjunto de dados de entrada e de saída do processo. A função de transferência desejada do sistema em malha fechada é especificada através do modelo de referência $T_d(z)$. O objetivo de controle é a minimização da função de custo.
O diagrama de blocos apresentado na Figura 3 representa o sistema considerado pelo VRFT.

![Diagrama de Blocos](image)

Figura 3 - Diagrama de blocos do sistema utilizado para gerar a referência virtual.

De forma geral, a aplicação do VRFT envolve as seguintes etapas:

1. Escolha da classe de controladores;
2. Escolha do modelo de referência, que representa o comportamento desejado do processo em malha fechada;
3. Coleta de dados dos sinais de entrada \(u(t) \) e saída \(y(t) \) da planta \(G_0(z) \), a partir de um experimento em malha aberta ou malha fechada;
4. Obtenção do sinal de referência virtual \(\tilde{r}(t) \), filtrando \(y(t) \) pela função inversa do modelo de referência;
 \[
 \tilde{r}(t) = T_d(z)^{-1} y(t) \tag{2.14}
 \]
5. Obtenção do sinal de erro virtual \(\tilde{e}(t) \), a partir da Equação (2.15);
 \[
 \tilde{e}(t) = \tilde{r}(t) - y(t) \tag{2.15}
 \]

A partir da obtenção do sinal de erro virtual, torna-se um problema de identificação dos parâmetros do controlador, onde se tem os sinais de entrada \(\tilde{e}(t) \) e saída \(u(t) \). Esses parâmetros são obtidos de modo que tornam o sinal \(C(z, \rho)\tilde{e}(t) \) o mais próximo possível de \(u(t) \). A função custo a ser minimizada por esse método é representada por:

\[
J_y(\rho) = \frac{1}{N} \sum_{t=1}^{N} [u(t) - C(z, \rho)\tilde{e}(t)]^2 \tag{2.16}
\]
3. Estudo de Caso

Neste capítulo será apresentado o processo produtivo da indústria petroquímica onde o tanque de alimentação da extrusora está inserido. Na sequência, será detalhada a estratégia de controle regulatório do tanque, bem como seus objetivos e limitações.

3.1. Processo produtivo

O tanque, onde está configurada a malha de controle de pressão abordada neste trabalho, faz parte de uma planta de polietileno de baixa densidade (PEBD) de tecnologia tubular, a alta pressão. O processo está representado na Figura 4 por um diagrama de blocos simplificado.

![Diagrama de blocos simplificado do processo produtivo de PEBD a alta pressão.](image)

De forma geral, o processo inicia com a compressão do gás eteno com alto grau de pureza, através de dois sistemas de compressão, primário e secundário. Esses sistemas são responsáveis por elevar a pressão do eteno em cerca de 50 vezes, para atingir as condições de síntese da reação. Na sequência, o gás a alta pressão entra no reator, onde ocorre a reação de polimerização através de radicais livres, iniciada pela injeção de peróxidos orgânicos. Além dos peróxidos, também...
estão presentes na reação os agentes de transferência, ou modificadores de cadeia. Estes são responsáveis pela modificação da estrutura (ramificações) do polímero, sendo, portanto, utilizados para controlar as propriedades finais da resina. Nessa reação é formada a resina polietileno, de aspecto pastoso e de baixa densidade. A conversão não é total, portanto, parte do eteno que entra no reator não reage, e segue pelo processo na forma de gás livre ou ocluso. Este fica preso à resina e é liberado aos poucos, no restante e após o processo.

Do reator, a resina com gás ocluso e gás livre passam para o tanque de separação de alta pressão (AP), de onde parte do gás livre sai pela parte superior e retorna para o processo através de um reciclo de alta pressão (RAP). Este tanque opera sem nível, para evitar que ocorra arraste da resina para o RAP, pois pode ocasionar uma parada de planta. Pela parte inferior, a resina e parte do gás seguem para o tanque de separação de baixa pressão (BP). Deste tanque, a resina é alimentada na extrusora, onde são formados os pellets. O gás livre que não foi separado na etapa anterior retorna para o processo pela parte superior do vaso, através de um reciclo de baixa pressão.

3.2 Instrumentação do tanque

O tanque conta com um medidor de nível e um medidor de pressão. A medição do nível é feita por radiação. Esse sistema é composto por duas fontes de emissão de raios gama e um detector. A pressão é medida por um transmissor eletrônico capacitivo.
3.3 Particularidades operacionais

Algumas particularidades quanto à operação do tanque de separação de BP devem ser destacadas. A primeira delas é relacionada à segurança do processo, e envolve a possibilidade da passagem de gás para a atmosfera, com risco de explosão. Este cenário é uma combinação de dois fatores: falsa indicação do nível e pressão do vaso mais alta do que a prevista na condição de síntese do polímero. Devido ao formato cônico da parte inferior do tanque, a resina, que possui alta viscosidade, é propensa a escoar lentamente pelas paredes e criar caminhos preferenciais no centro, como um funil. Dessa forma, o nível terá indicação maior do que a condição real, devido ao princípio de medição radioativo que indicará a partir da leitura da resina aderida na parede. A resina segue escoando por esse caminho preferencial, até que esgote e ocorra passagem do gás livre que se encontra no vaso. O gás segue para a extrusora, que conta com um tubo de abertura para a atmosfera, por onde o gás acaba sendo liberado.

Para evitar que ocorra passagem de gás para a extrusão, e consequentemente a atmosfera, a malha de controle deve impedir grandes oscilações no nível do vaso (evitando que se perca o selo de resina no fundo do vaso), principalmente quando se opera com grades de maior viscosidade, pois a
condição de síntese destes exige uma faixa de operação mais alta de pressão. A segunda particularidade está relacionada a perdas de processo, e também envolve o controle de pressão do vaso. A quantidade de gás ocluso que permanece na resina ao final do processo é inversamente proporcional à pressão no tanque. Quanto menor a pressão, maior a facilidade para o gás ocluso na resina se desprender e sair pelo topo do vaso, retornando para o processo pelo reciclo de baixa pressão. Menor quantidade de gás ocluso na resina implica menores perdas de gás para a atmosfera e, consequentemente, maior o reaproveitamento do gás no processo. Portanto, é indicado manter a pressão no menor valor possível.

Entretanto, um valor muito baixo de pressão no vaso separador de baixa pressão pode implicar arraste de resina para os reciclos de alta e baixa pressão, ocasionando uma parada de planta. Quando a pressão é muito baixa, a vazão de saída do tanque de separação de AP é reduzida (conforme estratégia de controle explicada na seção 3.4). Essa diminuição de vazão pode gerar nível de resina no vaso e, consequentemente, arraste dela para o reciclo de alta pressão. Da mesma forma, o arraste da resina pode ocorrer no vaso de separação de BP, pois não há pressão suficiente para manter o fluxo de escoamento do polímero na parte inferior do tanque.

3.4 Estratégia de controle regulatório

A estratégia de controle do tanque de separação de baixa pressão era anteriormente formada apenas por uma malha cascata entre o nível do vaso e o torque da extrusora. Assim, quanto menor o torque, menor a velocidade de escoamento e maior o nível do tanque, e vice-versa.

Entretanto, visando diminuir a quantidade de gás ocluso na resina, bem como melhorar a qualidade do produto através da estabilidade do nível, implementou-se uma segunda malha, com estrutura de cascata, envolvendo o nível e a pressão do tanque. Quanto menor a pressão do tanque, menor a quantidade de gás ocluso e maior o nível, e vice-versa. A Figura 6 ilustra as duas estratégias de controle, que operam independentemente, através de seletora.
3.4 Objetivos de controle

O principal objetivo é manter uma variabilidade baixa do nível, pois ela influencia diretamente a qualidade do produto. Alguns produtos possuem um índice de fluidez muito baixo, o que faz com que, ocasionalmente, parte da resina permaneça aderida nas paredes do tanque. Dessa forma, uma grande variabilidade do nível pode gerar contaminações para grades diferentes.

O segundo objetivo é minimizar a pressão do tanque, visando diminuir a quantidade de gás ocluso na resina. Há, contudo, uma limitação para o valor mínimo dessa pressão, para evitar o arraste da resina pelo topo do vaso, para o reciclo de baixa pressão.

3.4.2 Variáveis controladas

Como descrito anteriormente, as variáveis controladas deste sistema são o nível e a pressão do tanque de separação de baixa pressão, e o torque da extrusora.
3.4.3 Variáveis manipuladas

A pressão é controlada por uma válvula localizada na saída do tanque de separação de AP, que regula a vazão de entrada do vaso de separação de BP. A segunda variável manipulada é a válvula de saída do tanque de BP, que regula a vazão de escoamento da resina para a extrusão.

3.4.4 Distúrbios

Existem alguns distúrbios no nível do tanque inerentes à tecnologia do processo. O primeiro deles provém de uma particularidade do reator tubular, que possui um sistema de purga automático e periódico, a fim de evitar o acúmulo da resina nas paredes do reator, e transportá-la para o vaso separador. Essa purga ocorre através de quedas bruscas na pressão do reator, o que gera distúrbios tanto para o nível quanto para a pressão do tanque.

Além dos distúrbios causados pela purga do reator, existem também dificuldades em relação à medição das variáveis. Devido ao princípio de medição do nível, dois fatores podem causar incertezas: o índice de fluidez e o acúmulo de resina nas paredes do tanque de alimentação. Como o nível é medido por radiação, quando a resina é muito viscosa, demora a escoar pela parede, causando um atraso adicional no sinal da variável, e uma alteração na dinâmica do processo. Da mesma forma, quando há acúmulo de resina nas paredes, a medição pode se tornar inexata.

Outro distúrbio identificado está relacionado com a carga de eteno da planta. A oscilação dessa carga gera uma oscilação no torque da extrusora, que por sua vez transmite essa variabilidade (em menor intensidade) ao nível do tanque.
4. Metodologia

Os parâmetros de sintonia foram calculados pelo método Virtual Reference Feedback Tuning, a partir de um algoritmo implementado no software Matlab por MESQUITA (2016). A estrutura do código encontra-se no Anexo I. O processo para a aplicação do algoritmo ocorreu conforme as etapas previamente descritas:

i. Escolha do tipo de controlador;
ii. Escolha do modelo de referência;
iii. Coleta de dados de entrada e saída do processo, em malha fechada;
iv. Aplicação do algoritmo.

A classe do controlador foi escolhida de acordo com o tipo já utilizado na planta, para possibilitar a aplicação posterior. Para a definição da função de transferência desejada, foi avaliado o comportamento de modelos com diferentes constantes de tempo em malha fechada \(\tau \), considerando uma função de primeira ordem no domínio contínuo:

\[
T_d(s) = \frac{1}{\tau s + 1}
\]

(4.1)

Para aplicação do método, \(T_d(s) \) deve ser transformada para a forma discreta, representada por:

\[
T_d(z) = \frac{1-c}{z - c}
\]

(4.2)

Os dados do processo foram coletados em malha fechada e organizados em três vetores colunas de tamanhos idênticos, definidos como entrada \(u_{out} \), saída \(y_{out} \) e referência \(r \).

A partir da escolha da classe de controlador, do modelo de referência, da entrada dos dados do processo e da especificação do tempo de amostragem dos dados, o algoritmo pode ser aplicado para o cálculo dos parâmetros de sintonia. O primeiro passo é a formulação da resposta desejada \(y_d \) do modelo de referência, considerando os dados do vetor \(r \), como demonstrado pela Equação 2.9. Na sequência, para definir o desempenho do controle, é calculada a função de custo dada por 2.8. O próximo passo é a formulação da referência virtual \(\hat{r}(t) \), dada pela
Equação (2.14), que serve então como base para o cálculo do erro virtual \(\bar{e}(t) = r(t) - y(t) \). Calcula-se o vetor \(\varphi(t) = \beta(z)\bar{e}(t) \), como adaptado da Equação (2.10). Finalmente, a partir de \(\varphi(t) \) é calculado o vetor \(\rho(t) \) que minimiza a função custo a partir de um problema analítico de mínimos quadrados, fornecendo os parâmetros do controlador desejado.

A formulação do método VRFT é baseada em sistemas que não apresentam ruído. Para o caso de um conjunto de dados do processo com ruído, utiliza-se uma variável instrumental, dada por:

\[
\xi(t) = \beta(z)(T_d^{-1}(z) - 1)y'(t)
\]

Sendo \(y'(t) \) o valor de saída da planta obtido através de um experimento adicional, utilizando o mesmo sinal de entrada \(u(t) \). Os parâmetros do controlador são então obtidos:

\[
\hat{\rho}' = \bar{E}[\xi(t)\varphi(t)^T]^{-1}\bar{E}[\xi(t)u(t)]
\]

Para que seja possível sintonizar a malha com o valor dos parâmetros encontrados pelo algoritmo de VRFT, é necessária uma adaptação para o padrão do Sistema Digital de Controle Distribuído (SDCD) da planta industrial. Sendo assim, é necessária a transformação algébrica do ganho Proporcional para Banda Proporcional, conforme a Equação (4.5).

\[
K_{PBAND} = \frac{100}{K_p}
\]

Com o intuito de considerar o ruído do processo, fez-se uma tentativa de aplicação desta estrutura do algoritmo, em malha fechada. Como anteriormente descrito, para este caso é necessário gerar um segundo conjunto de dados de saída da planta, com o mesmo conjunto de entrada em malha aberta. Como se recomenda que esta malha de controle não seja operada em modo manual, o método não pode ser corretamente aplicado para este cenário.
5. Resultados

Neste capítulo, serão apresentados os resultados da aplicação do método VRFT na malha de pressão do tanque separador de BP de uma unidade de produção de polietileno de baixa densidade.

A classe de controlador escolhida foi o PI, conforme o modelo que é utilizado na planta. Os dados de entrada e saída do processo foram exportados de um sistema Plant Information Management System (PIMS), com um tempo de amostragem de um segundo. Para avaliar a aplicação do método, foram escolhidos dois períodos. No primeiro (I), a malha de pressão encontrava-se em modo de operação automático e em cascata (remoto) com a malha de controle de nível, em condições normais de operação. No segundo (II), a malha de pressão encontrava-se apenas em automático, com a cascata aberta (local).

O período da coleta de dados I está representado no gráfico de tendência da pressão ao longo do tempo, na Figura 7. A linha verde representa a abertura da válvula/entrada da planta (u_{out}) em %, a linha azul, a pressão no vaso/saída da planta (y_{out}) em kg/cm², e a linha amarela a referência (r), em um período de aproximadamente oito minutos. Para manter o sigilo industrial, a escala dos dados foi removida.

![Figura 7 - Gráfico de tendência da pressão do vaso separador de BP, conjunto de dados I.](image-url)
Foram efetuadas simulações computacionais para três possíveis modelos de referência com valores de \(\tau \) iguais a 30, 60 e 120 segundos. Na Tabela 1 encontram-se as respectivas funções de transferência, nas formas contínua \(T_d(s) \) e discreta \(T_d(z) \). Os resultados das simulações estão apresentados na Figura 8.

Fonte de referência não encontrada., na Figura 9 e na Figura 10, onde a linha vermelha representa o vetor da referência \(r \) da planta, a azul o comportamento simulado da função de transferência especificada em malha fechada, e a verde o comportamento da malha real \(y(t) \).

Tabela 1 - Funções de transferência simuladas para escolha do modelo de referência.

<table>
<thead>
<tr>
<th>(\tau ,[s])</th>
<th>(T_d(s))</th>
<th>(T_d(z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>(\frac{1}{30s + 1})</td>
<td>(\frac{0,03278}{z - 0,9672})</td>
</tr>
<tr>
<td>60</td>
<td>(\frac{1}{60s + 1})</td>
<td>(\frac{0,01653}{z - 0,9835})</td>
</tr>
<tr>
<td>120</td>
<td>(\frac{1}{120s + 1})</td>
<td>(\frac{0,008299}{z - 0,9917})</td>
</tr>
</tbody>
</table>

Figura 8 - Resultado da simulação da função de transferência com \(\tau = 30s \).
Figura 9 - Resultado da simulação da função de transferência com $\tau = 60s$.

Figura 10 - Resultado da simulação da função de transferência com $\tau = 120s$.

Analisando os resultados obtidos pela simulação para cada constante de tempo, concluiu-se que a melhor opção para o modelo de referência é $\tau = 30$
segundos (Figura 8), pois é desejado que a malha de controle apresente um comportamento rápido.

Primeiramente, aplicou-se o algoritmo considerando a função de transferência discretizada

\[T_d(z) = \frac{0,03278}{z - 0,9672} \]

Para esse cenário, obteve-se \(K_p = -2,3 \) e \(T_i = -0,46 \) segundos. Para comparação, os valores do controlador da malha de controle de pressão no período a que se referem os dados eram \(K_p = -0,45 \) e \(T_i = 180 \) segundos. O valor negativo obtido para \(K_p \) é coerente, pois o controlador possui ação direta. Contudo, o valor negativo obtido para \(T_i \) é inconsistente, e sugere que o método não é aplicável para este conjunto de dados em malha cascata. Para avaliar essa suposição, aplicou-se o método considerando outros modelos de referência com diferentes valores de \(\tau \). Os resultados encontrados indicam a não aplicabilidade do VRFT para este caso, conforme a Tabela 2.

Tabela 2 - Parâmetros obtidos através do VRFT para o conjunto de dados I, com a malha em cascata.

<table>
<thead>
<tr>
<th>(\tau [s])</th>
<th>(K_p)</th>
<th>(T_i [s])</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>-2,3</td>
<td>-0,46</td>
</tr>
<tr>
<td>35</td>
<td>-2,0</td>
<td>-0,46</td>
</tr>
<tr>
<td>45</td>
<td>-1,5</td>
<td>-0,46</td>
</tr>
<tr>
<td>60</td>
<td>-1,2</td>
<td>-0,46</td>
</tr>
<tr>
<td>120</td>
<td>-0,58</td>
<td>-0,46</td>
</tr>
</tbody>
</table>

Alternativamente, considerou-se utilizar o mesmo conjunto de dados I, mas na forma de desvio, a fim de refined os resultados. Para esse cenário, o método foi aplicado para os mesmos valores de \(\tau \) do teste anterior, e os parâmetros obtidos encontram-se na Tabela 3. Não houve alteração quanto ao sinal de \(T_i \).
Tabela 3 - Parâmetros obtidos através do VRFT para o conjunto de dados I na forma de desvio.

<table>
<thead>
<tr>
<th>τ [s]</th>
<th>Kp</th>
<th>Ti [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>-0.49</td>
<td>-12.5</td>
</tr>
<tr>
<td>35</td>
<td>-0.42</td>
<td>-12.5</td>
</tr>
<tr>
<td>45</td>
<td>-0.33</td>
<td>-12.5</td>
</tr>
<tr>
<td>60</td>
<td>-0.24</td>
<td>-12.5</td>
</tr>
<tr>
<td>120</td>
<td>-0.12</td>
<td>-12.5</td>
</tr>
</tbody>
</table>

Na sequência, aplicou-se o VRFT para o conjunto de dados II, onde a malha de controle de pressão encontrava-se em modo automático e local (Figura 11). Da mesma forma, consideraram-se os dados sem e com desvio, para os mesmos valores de τ. Para ambos os casos, os resultados obtidos mostraram-se coerentes, conforme a Tabela 4 e a Tabela 5. Os parâmetros encontrados considerando o conjunto de dados II na forma de desvio são mais próximos dos valores do controlador da malha de controle de pressão ($K_p = -0.45$ e $T_i = 180$ segundos) na planta.

Figura 11 - Gráfico de tendência da pressão do vaso separador de BP, conjunto de dados II.

A linha verde representa a abertura da válvula/entrada da planta (u_{out}) em %, a linha azul, a pressão no vaso/saída da planta (y_{out}) em kg/cm², e a linha amarela a referência ($τ$).
Aplicação do Método VRFT para a Sintonia do Controle da Pressão de Alimentação de uma Extrusora Industrial

Tabela 4 - Parâmetros obtidos para o conjunto de dados II, com a malha de pressão em automático e local.

<table>
<thead>
<tr>
<th>τ[s]</th>
<th>Kp</th>
<th>Ti[s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>-2,1</td>
<td>7,2</td>
</tr>
<tr>
<td>35</td>
<td>-1,8</td>
<td>7,2</td>
</tr>
<tr>
<td>45</td>
<td>-1,4</td>
<td>7,2</td>
</tr>
<tr>
<td>60</td>
<td>-1,0</td>
<td>7,2</td>
</tr>
<tr>
<td>120</td>
<td>-0,53</td>
<td>7,2</td>
</tr>
</tbody>
</table>

Tabela 5 - Parâmetros obtidos para o conjunto de dados II, na forma de desvio.

<table>
<thead>
<tr>
<th>τ[s]</th>
<th>Kp</th>
<th>Ti[s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>-0,35</td>
<td>64,3</td>
</tr>
<tr>
<td>35</td>
<td>-0,30</td>
<td>63,4</td>
</tr>
<tr>
<td>45</td>
<td>-0,23</td>
<td>64,6</td>
</tr>
<tr>
<td>60</td>
<td>-0,17</td>
<td>64,8</td>
</tr>
<tr>
<td>120</td>
<td>-0,09</td>
<td>62,7</td>
</tr>
</tbody>
</table>
6. Conclusões

Sabe-se que, em geral, uma planta industrial possui diversas particularidades operacionais, desde erros de medição de variáveis a restrições de operação. Foram identificadas algumas limitações do processo que não estavam previstas pelo algoritmo, como a necessidade da estimação de parâmetros considerando o ruído sem a possibilidade de abrir a malha de controle. Apesar disso, o método mostrou potencial para ser aplicado com um conjunto de dados de uma malha de controle servo em cascata de um processo real, quando esta se encontra em automático e local. Sendo assim, para o cenário em que a malha de controle encontra-se em automático e remoto, a aplicação do método VRFT não se mostrou coerente na proposição dos parâmetros para o controlador. Um dos possíveis motivos para essa dificuldade na obtenção dos parâmetros é a faixa de frequência pequena do sinal de referência, o que não ocorre quando a malha de controle está em automático e remoto, pois a variação da referência é realizada na forma de degraus.

Este trabalho pode ser considerado um teste preliminar para a completa validação do método de controle baseado em dados VRFT em um processo real. Os próximos passos consistem na aplicação do algoritmo em outras malhas de controle com o mínimo de restrições operacionais, a fim de validar o código implementado a nível industrial.
7. Referências Bibliográficas

8. Anexo I

8.1 Algoritmo VRFT (Matlab)

estrutura_controlador = 'PID';

Tf1=1;
Ts = Tf1; %Ts é o tempo de amostragem

% Vetor dos parâmetros iniciais do controlador
% Teta=[0.01 0.001 0]'

%%%Formulação da função de transferência desejada%%%
% Td=tf([0.1],[1 -0.9],Ts);
% Td=tf([0.6321],[1 -0.3679],Ts);
Td=tf([.1813],[1 -0.8187],Ts);
% Td=tf([0.03921],[1 -0.9608],Ts);
% Td=tf([0.009356 0.008758],[1 -1.802 0.8204],Ts);

%Formulação do vetor de tempo de ensaio
t_aquis=length(r)*Ts;
tout=[0:Tf1:(t_aquis-Ts)]';

%Formula a resposta desejada (yd) do modelo de referência (Td)
% ao sinal de referência utilizado no ensaio:
yd=lsim(Td,r,tout);

% Salva os vetores de resposta em outras variáveis para tratamento posterior
% yd_inicial=yd; %Salva o vetor saída desejada pré sintonia
Ref_inicial=r; %Salva o vetor referência pré sintonia;
Saida_inicial=y_out; %Salva o vetor referência pré sintonia;
Tempo_inicial=tout; %salva o vetor tempo pré sintonia;
% Saida_inicial1=y_out1;

%Cálculo do custo/critério de desempenho associado ao controlador inicial
custo(:,1)=sum((y_out-yd).^2)/(2*length(y_out));

%FT termo proporcional do controlador
P=tf([1],[1],Ts);
%FT termo integral do controlador
I=tf([1],[1 -1],Ts);
%FT tempo derivativo do controlador
D=tf([1 -1],[1 0],Ts);

%Formulação da função de transferência do modelo de referência escolhido
indice=1;
grau_relativo=0;
vetor_numerador=cell2mat(Td.num);

while (vetor_numerador(indice) == 0)
 indice=indice+1;

grau_relativo=grau_relativo+1;
end

Td=inv(Td);
Td=Td*tf([1],[1 zeros(1,grau_relativo)],Ts);

%Formulação da referência virtual
r_virtual=lsim(Td,y_out,tout);
r_virtual=[r_virtual(1+grau_relativo:end)];

%Formulação do erro virtual
erro=r_virtual-y_out(1:end-grau_relativo);

%Adequação da dimensão do vetor de ação de controle para entrar em
%conformidade com demais vetores para fins de cálculo
u_out=u_out(1:end-grau_relativo);

%% Sem Ruído
% Cálculo do vetor Phi (controlador multiplicado pelo erro virtual)
Phi(:,1)=[lsim(P,erro,tout(1:end-grau_relativo))];
Phi(:,2)=[lsim(I,erro,tout(1:end-grau_relativo))'];
Phi(:,3)=[lsim(D,erro,tout(1:end-grau_relativo))'];
%
% Cálculo do vetor Teta que fornece o controlador desejado
Teta=(inv(Phi'*Phi))*Phi'*u_out;
Teta=Teta';

%% Quando há ruído
Phi(:,1)=[lsim(P,erro,tout(1:end-grau_relativo))];
Phi(:,2)=[lsim(I,erro,tout(1:end-grau_relativo))'];
Phi(:,3)=[lsim(D,erro,tout(1:end-grau_relativo))'];
Csi(:,1)=[lsim(P*Td,y_out_1(1:end-grau_relativo),tout(1:end-grau_relativo))]-[y_out_1(1:end-grau_relativo)];
Csi(:,2)=[lsim(I*Td,y_out_1(1:end-grau_relativo),tout(1:end-grau_relativo))]-[y_out_1(1:end-grau_relativo)];
Csi(:,3)=[lsim(D*Td,y_out_1(1:end-grau_relativo),tout(1:end-grau_relativo))]-[y_out_1(1:end-grau_relativo)];

% Cálculo do vetor Teta que fornece o controlador desejado
Teta=(inv(Csi'*Phi))*Csi'*u_out;
Teta=Teta';

switch estrutura_controlador
 case 'P'
 Teta=[Teta(1);0;0]
 case 'PI'
 Teta=[Teta(1);Teta(2);0]
 case 'PID'
 Teta=[Teta(1);Teta(2);Teta(3)]
end