A124
Effects of regular physical exercise on the levels of flexibility of diabetics type 2
Cristiane Correia da Silva¹,2, Jonathan Nicolás dos Santos Ribeiro², Cláudio Barnabé dos Santos Cavalcanti¹, Denise Maria Martins Vancea²
¹UPE, Recife, Brazil; ²UPE/UFPE, Recife, Brazil
Correspondence: Cristiane Correia da Silva
Journal of Diabetology & Metabolic Syndrome 2018, 10(Suppl 1):A124

Introduction: Collagen is the main protein responsible for resistance to flexibility, and in connective tissue disorders of glucose metabolism in the diabetic can produce a superglicolization of specific collagens, thus reducing levels of flexibility.

Objective: To verify the effects of regular physical exercise on the flexibility levels of type 2 diabetics.

Method: Characterized as a quasi-experimental study. The sample was non-probabilistic; 11 female subjects with type 2 diabetes, with a mean age of 66.5 ± 1.6 years, participated in the study. The training protocol was composed of resistance and aerobic training, the flexibility assessment was performed before and after the intervention that lasted 6 weeks. To assess flexibility, a Tera Flex 1.8 digital flexometer was used by Tera Science. For the comparison of the means of the variables, a variance analysis was used with repeated measures, and multiple comparisons using Fisher’s least significant difference method and Wilcoxon’s nonparametric test. For all tests a significance level was adopted p < 0.05.

Results: There was an increase from 87.7 ± 12.5 to 102.4 ± 14.6 (p = 0.003), in the thoracic joint amplitude of the diabetics evaluated.

Conclusion: The training protocol used in this study showed a significant increase in the levels of flexibilities of type 2 diabetics, of this sample.

A125
Effects of resistance training on signs and symptoms of distal diabetic polyneuropathy in type 2 diabetic patients: pilot study
Camilla Rodrigues de Souza Silva, André dos Santos Costa, Tamires do Nascimento, Diogo Arruda Martins de Lima, Sandro Gonçalves de Lima, Jhonathan Vasconcelos Pereira Santos, Paulo Daywson Lopes da Silva, César Augusto Melo de Souza, Silvia Regina Arruda de Moraes
UFPE, Recife, Brazil
Correspondence: Camilla Rodrigues de Souza Silva
Journal of Diabetology & Metabolic Syndrome 2018, 10(Suppl 1):A125

Introduction: The distal peripheral polyneuropathy (DPP) is one of the main Diabetes complications and physical exercise can be an alternative to minimize the signs and symptoms.

Objective: Assessment of resistance training effects on signs and symptoms of DPP on type 2 diabetic patients.

Methods: Randomized controlled trial with 10 diabetic patients (7 women and 3 men 58.8 ± 3.8 years; 71.9 ± 9.1 kg; 158 ± 5.5 cm; 15.6 ± 10.6 years of DM2 diagnostic) with DPP diagnosed by the DDP diagnostic scale (DDPDS). They were randomized in two groups, the control group (n = 4) received education sessions about diabetes, and the exercise group (n = 6) besides the education sessions, followed a moderate exercise training for upper and lower limbs 3 times a week, during 12 weeks. The DDPDS provided the Neuropathy Symptom Score (NSS) and the Neuropathy Disability Score (NDS) of each individual. The tactile sensibility was evaluated with the Semmes-Weinstein monofilament (10 g). After the Kolmogorov–Smirnov normality test, the pared t test was used for intragroup comparisons. For the intergroup comparison, the t test was used for independent samples both on pre and post intervention phases.

Results: The results showed significant improvements on the NDS, on both intragroup comparison of the exercise group (p < 0.001) and intergroup comparison on the post-intervention moment. The other parameters assessed did not show significant difference.

Conclusion: The resistance training was effective on the improvement of the Neuropathy Disability Score of type 2 diabetic patients with distal diabetic polyneuropathy.
Effects of the physical training in different intensities on the balance of elderly with type 2 diabetes
Rodrigo dos Santos Rodrigues Alves1, Jonathan Nicolas dos Santos Ribeiro2, Cláudio Barnabé dos Santos Cavalcanti3, Denise Maria Martins Vancea4
1UPE, Pernambuco, Brazil; 2UFPE, Pernambuco, Brazil; 3UPE e UFPE, Pernambuco, Brazil

Correspondence: Rodrigo dos Santos Rodrigues Alves
Journal of Diabetology & Metabolic Syndrome 2018, 10(Suppl 1):A127

Introduction: In diabetes mellitus, changes in skeletal muscle, associated with age muscle mass loss, contribute to a decrease of muscle strength, balance and control.

Objective: To investigate the effects of physical training after 3 months of intervention in the balance of elderly with type 2 diabetes.

Method: Characterized as quasi-experimental. Twenty-four elderly with type 2 diabetes were enrolled in a supervised physical exercise program. Two groups of moderate intensity (n = 11) and high intensity (n = 13) were organized. The physical training protocol was composed of aerobic and strength training. The strength group was divided into moderate intensity of 20–25 repetitions and high intensity of 8–15 repetitions, both with 1’ interval. The aerobic group, which used the treadmill, used the protocol with 10’ in the moderate intensity, scale 13 on the Subjective Effort Perception, and 5’ for high intensity, in the scale 15. For balance evaluation we used the sit and stand test. Multiple comparisons were made using Fisher’s least significant difference method. Nonparametric Kruskal-Wallis test was also performed and a significance level of p < 0.05 was used for all tests.

Results: There was an improvement in the balance at moderate intensity (pre 4.9 ± 2.0 versus post 6.2 ± 2.2 p = 0.04) and at high intensity (pre 3.7 ± 2.6 vs. post 5.0 ± 2.6 p = 0.03).

Conclusion: The physical training used in this study was effective in improving the balance of elderly with type 2 diabetes.

A128
Efficacy and safety across the final dose ranges in patients with T2DM receiving insulin glargine/lixisenatide fixed-ratio combination in the LixiLan-L trial
Robert Ritzel1, Josep Vidal2, Vanita R. Aroda3, Yujun Wu3, Elisabeth Souhami5, Elisabeth Niemoeller6, Robert R. Henry7, Lixilan-L Trial Investigators
1Klinikum Schwabing, Städtisches Klinikum München GmbH, Munich, Germany; 2Department of Endocrinology and Nutrition, Hospital Clinic of Barcelona, Barcelona, Spain; 3Medstar Health Research Institute, Hyattsville, MD, USA; 4Biostatistics and Programming, Sanofi-Aventis US, Bridgewater, NJ, USA; 5Diabetes Division, Sanofi, Paris, France; 6Diabetes Division, Sanofi, Frankfurt, Germany; 7UC San Diego and Section of Diabetes, Endocrinology, and Metabolism, Veterans AWairs San Diego Healthcare System, Center for Metabolic Research, San Diego, CA, USA

Correspondence: Robert Ritzel
Journal of Diabetology & Metabolic Syndrome 2018, 10(Suppl 1):A128

In the 30-week LixiLan-L trial, LixiLan, a novel titratable fixed-ratio combination of insulin glargine (Gla-100) and GLP-1RA lixisenatide, showed superior glycemic control over Gla-100 alone, both optimized to FPG 80–100 mg/dL (maximum 60 U/day), in patients with T2DM inadequately controlled on basal insulin ≤ 2 oral drugs. In this post hoc analysis, safety and efficacy of LixiLan were evaluated in final dose categories of Gla-100 (both groups) and lixisenatide (LixiLan group). At week 30 (study end), reductions in HbA1c and proportions of responders achieving HbA1c < 7% were similar across dose categories. Across all dose levels, LixiLan induced body weight loss or prevented weight gain. Incidence of documented symptomatic hypoglycemia (SMPG ≤ 70 mg/dL) was numerically higher in patients receiving final Gla-100 dose < 30 U vs. those receiving ≥ 30 U. This is also shown by final lixisenatide dose level. Incidence of nausea was low in the LixiLan group (Table), potentially due to slow increase of lixisenatide component in the combination. Efficacy and safety of LixiLan were generally consistent across final dose categories of its Gla-100 and lixisenatide components and consistent with overall treatment groups. These results support clinically based dose titration of a fixed-ratio combination of insulin glargine and lixisenatide. Study code: NCT02058160. This is an ENCORE abstract previously presented at ADA2016. Funding and editorial support provided by Sanofi (Fig. 1).