AvalWeb - Sistema interativo para gerência de questões e aplicação de avaliações na Web

por

RODRIGO FERRUGEM CARDOSO

Dissertação submetida à avaliação, como requisito parcial para a obtenção do grau de Mestre em Ciências da Computação.

Prof. Dr. José Valdeni de Lima
Orientador

Cardoso, Rodrigo Ferrugem.

111 p.: il.

Agradecimentos

Agradeço a DEUS.
Agradeço à minha família pelo apoio.
Agradeço à Maria Luísa pela motivação e ajuda indispensáveis para realização deste trabalho.
Agradeço ao Everaldo, Filipe, Eidy e demais companheiros, que mais do colegas foram verdadeiros amigos.
Agradeço à Alessandra Rodrigues pelo incentivo e material de apoio.
Agradeço ao Rafael, pelo inestimável apoio técnico no desenvolvimento do protótipo.
Agradeço ao Jesus pelo apoio no desenvolvimento do *layout* do *software*.
Agradeço a Ida Rossi, pelo profissionalismo na revisão das normas técnicas desta dissertação.
Agradeço ao meu orientador, por ter acreditado e incentivado esta idéia, além de manter este trabalho no caminho correto.
Sumário

Lista de Abreviaturas .. 6
Lista de Figuras .. 8
Lista de Tabelas .. 10
Resumo .. 11
Abstract .. 12
1 Introdução .. 13
1.1 Motivação ... 13
1.2 Organização .. 15
2 WBT (Web-based Training) .. 17
 2.1 Fatores limitantes de cursos WBT ... 18
 2.2 Avaliação em WBT .. 19
 2.2.1 Aspectos locais e temporais para aplicação de avaliações em WBT 23
 2.2.2 Vantagens e desvantagens da avaliação em WBT 24
 2.2.3 Auto-avaliação .. 27
 2.2.4 Tipos de avaliação ... 28
 2.2.5 Funções da avaliação ... 28
 2.2.6 Abordagens complementares de avaliações em WBT 31
3 Estado-da-arte .. 32
 3.1 Avaliação em ambientes completos .. 32
 3.1.1 Aulanet 1.2 ... 32
 3.1.2 TopClass .. 34
 3.1.3 WebCT .. 36
 3.2 Ferramentas específicas para geração de avaliações .. 38
 3.2.1 Quiz Center ... 38
 3.2.2 Hot Potatoes .. 41
 3.2.3 Question Mark Perception .. 45
 3.3 Ferramentas de Autoria .. 48
 3.3.1 Asymetrix Toolbook .. 48
4 Ferramenta Proposta ... 54
 4.1 Arquitetura .. 54
 4.2 Público envolvido ... 55
 4.3 Descrição .. 56
 4.4 Modelo Conceitual .. 57
 4.5 Acesso ao sistema .. 58
 4.6 Auto-avaliação .. 61
 4.7 Avaliação ... 62
 4.7.1 Módulo para geração de avaliações .. 63
4.7.2 Relatórios ... 73
4.8 Submissão de trabalhos .. 76
4.9 Adaptatividade ... 76
4.10 Apresentação Dinâmica de Conteúdos 77
4.11 Diagrama Entidade-relacionamento 78
5 Protótipo ... 80
 5.1 Descrição .. 80
 5.2 Infraestrutura necessária .. 86
 5.3 Interface .. 86
 5.4 Integração com outros ambientes 86
6 Validação do protótipo .. 90
 6.1 Ambiente e público-alvo .. 90
 6.2 Metodologia aplicada .. 91
 6.3 Problemas ocorridos .. 92
 6.4 Resultados obtidos ... 93
7 Conclusões ... 97
 7.1 Principais contribuições deste trabalho 98
 7.2 Trabalhos futuros .. 99
Anexo 1 Dicionários de Dados ... 100
Bibliografia ... 105
Lista de Abreviaturas

<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Explicação</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>CBT</td>
<td>Computer Based Training</td>
</tr>
<tr>
<td>CGI</td>
<td>Common Gateway Interface</td>
</tr>
<tr>
<td>DFD</td>
<td>Diagrama de Fluxo de Dados</td>
</tr>
<tr>
<td>DHTML</td>
<td>Dynamic HyperText Markup Language</td>
</tr>
<tr>
<td>EAD</td>
<td>Ensino a distância</td>
</tr>
<tr>
<td>ECG</td>
<td>Eletro-cardiograma</td>
</tr>
<tr>
<td>E-R</td>
<td>Entidade-relacionamento</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>GIF</td>
<td>Graphics Interchange Format</td>
</tr>
<tr>
<td>HTML</td>
<td>HyperText Markup Language</td>
</tr>
<tr>
<td>HTTP</td>
<td>HyperText Transfer Protocol</td>
</tr>
<tr>
<td>IDC</td>
<td>International Data Corporation</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronic Engineers</td>
</tr>
<tr>
<td>IMS</td>
<td>Instructional Management Systems</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>LES</td>
<td>Laboratório de Engenharia de Software</td>
</tr>
<tr>
<td>MBPS</td>
<td>Megabytes por Segundo</td>
</tr>
<tr>
<td>MDB</td>
<td>Microsoft DataBase</td>
</tr>
<tr>
<td>MS</td>
<td>Microsoft</td>
</tr>
<tr>
<td>SQL</td>
<td>Structured Query Language</td>
</tr>
<tr>
<td>ODBC</td>
<td>Open DataBase Connectivity</td>
</tr>
<tr>
<td>PHP</td>
<td>Personal Home Page Tools</td>
</tr>
<tr>
<td>PPGC</td>
<td>Programa de Pós-Graduação em Computação</td>
</tr>
<tr>
<td>PSB</td>
<td>Perception Solution Browser</td>
</tr>
<tr>
<td>PUC-RIO</td>
<td>Pontifícia Universidade Católica - Rio de Janeiro</td>
</tr>
<tr>
<td>QM</td>
<td>Question Mark</td>
</tr>
<tr>
<td>SBES</td>
<td>Simpósio Brasileiro de Engenharia de Software</td>
</tr>
<tr>
<td>SBIE</td>
<td>Simpósio Brasileiro de Informática na Educação</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TEIA</td>
<td>Técnicas de Ensino Interativas Assistidas por Computador</td>
</tr>
<tr>
<td>TM</td>
<td>Trade Mark (Marca Registrada)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>UFMG</td>
<td>Universidade Federal de Minas Gerais</td>
</tr>
<tr>
<td>UFRGS</td>
<td>Universidade Federal do Rio Grande do Sul</td>
</tr>
<tr>
<td>URCAMP</td>
<td>Universidade da Região da Campanha</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom (Reino Unido)</td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locator</td>
</tr>
<tr>
<td>WBT</td>
<td>Web Based Training</td>
</tr>
<tr>
<td>WWW</td>
<td>World Wide Web</td>
</tr>
</tbody>
</table>
Lista de Figuras

FIGURA 3.1 - Cadastramento de questões no ambiente Aulanet 33
FIGURA 3.2 - Tela de exemplo com questões no TopClass - [WBT 2001] 35
FIGURA 3.3 - Exemplo de etapa da avaliação no TopClass - [WBT 2001] 36
FIGURA 3.4 - Exemplo de questão apresentada ao aluno - [WEB 2001] 37
FIGURA 3.5 - Exemplo de questão de auto-avaliação - [WEB 2001] 37
FIGURA 3.6 - Página para criação de questões no Quiz Center – [QUI 2001] 39
FIGURA 3.7 - Quadro apresentado após a criação de questões - [QUI 2001] 41
FIGURA 3.8 - Exemplo de Log – [QUI 2001] .. 41
FIGURA 3.9 - Tela de abertura do Hot Potatoes ... 42
FIGURA 3.10 - Tela principal do JBC .. 43
FIGURA 3.11 - Página gerada com o JBC ... 44
FIGURA 3.12 - Telas do Jcloze ... 44
FIGURA 3.13 - Tela principal do Question Manager 45
FIGURA 3.14 - Exemplo de relatório personalizado .. 47
FIGURA 3.15 - Exemplo de relatório padronizado ... 48
FIGURA 3.16 – Exemplo de script associado a um botão simples 49
FIGURA 3.17 - Catálogo do Toolbook II Assistant com a categoria de questões 50
FIGURA 3.18 - Propriedades do objeto “Questão de múltipla escolha” 51
FIGURA 3.19 - Tela de exemplo com questões do ECG 52
FIGURA 4.1 - Arquitetura do AvalWeb .. 55
FIGURA 4.2 – Exemplo de tela para cadastramento do professor 58
FIGURA 4.3 - Esquema representativo do cadastramento de um aluno 59
FIGURA 4.4 – Esquema representativo das opções de acordo com o usuário 60
FIGURA 4.5 - Parâmetros gerais das avaliações ... 64
FIGURA 4.6 - O pção para definição do nível de dificuldade 65
FIGURA 4.7 - Fórmula do nível de dificuldade do sistema 65
FIGURA 4.8 - Exemplo do cálculo do nível de dificuldade do sistema 66
FIGURA 4.9 - Fórmula para calcular a quantidade de questões 66
FIGURA 4.10 - Exemplo de cálculo de questões fáceis apresentadas 66
FIGURA 4.11 - Parâmetro ‘tipos’ para geração da avaliação 70
FIGURA 4.12 - Definição do período ... 71
FIGURA 4.13 - Atribuição da pontuação ... 71
FIGURA 4.14 - Definição dos tópicos para avaliação 73
FIGURA 4.15 - Relatório de Estatísticas por Questão.. 74
FIGURA 4.16 - Relatório de Respostas por Aluno ... 75
FIGURA 4.17 - Análise dos dados para apresentação da página............................... 78
FIGURA 4.18 - Diagrama entidade-relacionamento do AvalWeb 79
FIGURA 5.1 – Tela inicial para acesso ao sistema .. 80
FIGURA 5.2 – Tela para cadastramento dos dados do professor. 81
FIGURA 5.3 – Tela inicial do professor. ... 82
FIGURA 5.4 – Barra de ferramentas do módulo Professor. 82
FIGURA 5.5 – Módulo para cadastramento de questões. .. 83
FIGURA 5.6 – Segunda tela para cadastramento de questões. 84
FIGURA 5.7 – Módulo para geração de avaliações. ... 84
FIGURA 5.8 – Visualização da avaliação. ... 85
FIGURA 5.9 - Exemplo de apresentação do formulário ... 88
FIGURA 6.1 – Disposição física dos computadores no ambiente 90
FIGURA 6.2 – Parte da prova submetida aos alunos ... 91
FIGURA 6.3 – Facilidade de operação do sistema.. 94
FIGURA 6.4 – Confiabilidade do Sistema ... 95
FIGURA 6.5 – Aceitação de testes via Web .. 95
FIGURA 6.6 – Principal problema de testes via Web segundo a pesquisa 96
FIGURA 6.7 – Estilo de teste escolhido para próxima avaliação 96
Lista de Tabelas

TABELA 2.1 – Classificação de tempo e local de avaliações 23
TABELA 2.2 - Comparativo entre avaliações tradicionais e via Web 25
TABELA 4.1 - Demonstrativo da seqüência de acesso ao sistema............................ 61
TABELA 4.2 - Vantagens e desvantagens de acordo com o tipo de questão. 70
TABELA 4.3 - Exemplo de nível progressivo de dificuldade 77
TABELA 5.1 – Parâmetros que podem ser passados para a ferramenta 88
TABELA 6.1 - Formulário de questionamentos submetido aos alunos 92
TABELA 6.2 – Resultado obtido com a aplicação do questionário aos alunos 93
Resumo

Neste trabalho, é realizado um estudo dos processos de avaliação de alunos em ambiente WBT (Web Based Training). Para tanto, foram analisadas várias ferramentas de avaliação disponíveis no mercado.

Com base nestas análises, foi proposto um sistema de gerência de questões e aplicação de avaliações, onde o termo “gerência” é utilizado com o objetivo de (i) atender requisições dos professores para elaboração de avaliações, (ii) escolher o nível de dificuldade das questões que comporão a avaliação e (iii) usar estratégias interativas para aplicação de provas, como por exemplo, a utilização de níveis de dificuldade progressivos das questões submetidas aos alunos, dependendo de suas respostas anteriores.

Integrando o sistema de gerência de questões foi proposto um módulo de auto-avaliações, com retorno imediato para o aluno sobre qual é a resposta correta juntamente com uma explicação do professor, auxiliando no entendimento do estudante sobre a matéria ao invés de simplesmente atribuir determinada nota.

Enfim, foi implementado um protótipo demonstrando a viabilidade das idéias presentes no modelo de avaliação aqui proposto. A proposta conceitual estabelecida para o modelo é bem mais ampla e flexível do que a atual versão da implementação realizada.

Palavras-chave: Ensino a distância, Avaliação, WBT.
TITLE: “AVALWEB, INTERACTIVE SYSTEM FOR QUESTIONS MANAGEMENT AND ASSESSMENT IN A WEB”

Abstract

In this master dissertation, a study on pupil-assessment processes in a WBT (Web-based Training) environment is performed. Several Evaluation tools available in the market were analyzed to attain such a goal.

Based on said analyses, a query-management and assessment application was proposed in which the term, management, is used with the aim of (i) replying to applications from teachers to elaborate their own evaluations; (ii) choosing the difficulty level utilization on the questions submitted to the pupils, depending on the success of their prior answering.

A broader self-evaluation model was also proposed affording immediate feedback to the pupil, inserting in the query-management system modules that explain the reasons for hits and mistakes achieved in the answering process, emphasizing the learning/teaching process over the assessment itself.

Finally, a prototype was implemented to show how viable the ideas presented in the evaluation model herein proposed are. The conceptual proposal which was established for the model is far broader and more pliable than the present version of achieved implementation.

Keywords: Distance education, Assessment, WBT.
1 Introdução

Atualmente, pode-se considerar a Internet como uma ferramenta importante no processo ensino/aprendizado, não somente pela democratização do acesso, mas também, por redução de custos e outros fatores fundamentais, como utilização de mídias diferenciadas, controle centralizado e independência geográfica [BRI 99].

Isto proporciona uma utilização crescente do modelo de Educação a Distância em nível mundial, fazendo com que através da maior demanda surjam diversas questões a serem estudadas e aperfeiçoadas nas ramificações desta tecnologia.

Diversas ferramentas disponíveis no mercado trabalham com o aspecto de avaliação dos alunos através da Internet, sendo que algumas integram vários recursos entre eles a avaliação, como é o caso, por exemplo, dos ambientes WebCT, TopClass e Aulanet.

Afora estas, existem outras ferramentas que são específicas para elaboração e aplicação de avaliações, como por exemplo Hot Potatoes, Perception e Quiz Center.

Neste trabalho foram realizadas análises sobre diversos aspectos destes produtos e, com base nestes estudos, modelada uma ferramenta para avaliação visando suprir carências e principalmente propor inovações, contribuindo para área de ensino à distância.

A ferramenta proposta pode ser utilizada tanto em complemento a ambientes de educação à distância já existentes, quanto para auxiliar professores do ensino tradicional, que ministraram somente aulas presenciais.

Além da realização da modelagem, foi desenvolvido um protótipo com a implementação das principais características definidas para a ferramenta de avaliação, cujo objetivo é demonstrar a viabilidade das idéias aqui apresentadas. Para verificar se os objetivos pretendidos foram alcançados, foram realizados testes reais da aplicabilidade do protótipo com alunos de uma Universidade.

Cabe salientar que a proposta conceitual estabelecida para o modelo é bem mais ampla e flexível do que a atual versão da implementação realizada.

Como em qualquer ambiente educacional, para o sucesso da ferramenta é fundamental que exista tanto uma estratégia adequada por parte do professor quanto a participação e preparação dos alunos, além da disponibilidade de material didático adequado.

1.1 Motivação

O apelo do uso da tecnologia na área de educação é tão marcante que alguns observadores arriscam afirmar que o e-learning – ou ensino eletrônico – é a mais nova onda da Internet, depois do comércio eletrônico. O IDC (International Data Corporation) estima que o mercado de treinamento à distância por meio digital vai crescer mundialmente cerca de 69% ao ano. Com esse fator de crescimento, o setor deve sair de um patamar de modestos 2 bilhões de dólares em 1999 para 23 bilhões de dólares em 2004 [MOR 2001]. De acordo com estas previsões, a demanda atual e futura desta área justifica a criação de ferramentas que possam ser aplicadas neste contexto.

Além do enorme crescimento previsto para ensino a distância, a necessidade do desenvolvimento de novas ferramentas decorre da constatação de que as idéias por trás
dos sistemas ainda não estão consolidadas e o número de boas experiências no uso do computador no processo de ensino/aprendizagem é menor do que a sociedade poderia esperar [MAC 99]. Em vista dos benefícios que podem ser obtidos, fica evidente a necessidade e oportunidade do desenvolvimento de técnicas e ferramentas que proporcione a elaboração de avaliações por parte dos professores de forma que possam ser colhidos melhores resultados através de sua aplicação.

O tempo e esforço necessários para produzir ferramentas de aprendizado e avaliações on-line pode ser substancial e esta dificuldade está presente especialmente em determinadas áreas porque técnicas de avaliação usualmente não podem ser extraídas diretamente de livros texto e materiais de cursos [REN 2000].

Em geral, sistemas de avaliações de resultados devem fornecer informações críticas para educadores na efetividade do planejamento e entrega de um projeto educacional, atividade ou programa [MCG 00a]. O sistema proposto neste trabalho busca fornecer algumas informações que contribuam para estes objetivos, pois gera subsídios, tanto para alunos quanto para professores detectarem pontos críticos onde são enfrentadas maiores dificuldades na matéria, proporcionando ao professor corrigir falhas e fixar melhor o conteúdo nestes pontos.

Quanto mais informações o professor conseguir obter, melhor será a avaliação, pois quanto maior for a amostragem, mais perfeita é a avaliação. Todos os recursos disponíveis de avaliação devem ser usados na obtenção dos dados [ALB 95]. Essa é mais uma razão que justifica o uso, pelo professor, de técnicas e instrumentos variados de avaliação. Quanto mais dados forem colhidos sobre os resultados da aprendizagem, utilizando instrumentos diferentes e adequados aos objetivos propostos, tanto mais válida será considerada a avaliação.

O desenvolvimento do processo ensino/aprendizagem deve, portanto, ser acompanhado de uma avaliação constante. Verificações periódicas fornecem maior número de amostras e podem funcionar como um incentivo para que o aluno estude de forma sistemática, e não somente antes das provas.

Um dos problemas de realizar repetidas avaliações, a exemplo do que ocorre no ensino tradicional, é que a correção de testes por parte dos professores é uma tarefa trabalhosa e demorada.

Considerando estes aspectos e tendo em vista a crescente “falta de tempo” no cenário atual, a utilização do AvalWeb pode ser bastante útil para professores, pois permite que realizem inúmeras avaliações, consumindo menos tempo e proporcionando que concentrem maiores esforços, na melhoria do processo de ensino, através da análise dos dados gerados pelo sistema.

Não é razoável esperar que os professores tenham tempo ou treino estatístico necessário à consecução de uma análise de itens e de testes [BLO 83]. Além disso, muitos deles não estão, justificadamente, interessados em adquirir esta habilidade. Portanto, de maneira geral, os professores não submetem seus testes a uma análise técnica, apesar de um sistema formal de avaliações exigir que esta análise seja feita. Com a utilização do AvalWeb, existe uma grande economia de esforço e de tempo, pois embora a etapa de confecção das questões seja mais demorada, existe uma compensação posterior na geração da avaliação e na obtenção de resultados estatísticos automaticamente.

As experiências confirmam que, quando o aluno recebe imediata informação sobre os resultados da avaliação, existe uma tendência a melhorar a aprendizagem. É
relatada por [ALB 95], a experiência de Ross realizada com 59 alunos, que foram divididos em três grupos. A todos eles foram dadas as mesmas atividades para aprendizagem de uma habilidade motora. O primeiro grupo - chamado grupo de controle - não recebeu nenhuma informação do progresso alcançado depois de cada prática. O segundo recebeu apenas algumas informações sobre seu rendimento. O terceiro teve conhecimento completo de seus erros e acertos. O resultado foi que o terceiro grupo apresentou uma aprendizagem mais eficiente, isto é, um rendimento maior, em menor tempo. Por este motivo, o AvalWeb possui um módulo de auto-avaliações que tem por objetivo informar aos alunos onde estão sendo enfrentadas maiores dificuldades.

A automatização de parte do processo de confecção e submissão de testes é uma alternativa eficiente e de custo relativamente baixo para alcançar um rápido feedback. Se utilizada com moderação e combinada com outras formas de testes, a avaliação online pode fornecer ainda outras maneiras de avaliar o desempenho do estudante com uma significativa redução de sobrecarga para professores [TIN 97].

Apesar de apresentarem diversas diferenças na forma de realização, não existem distorções nas notas obtidas pelos alunos que realizam avaliações via Web em comparação com testes tradicionais. Em seu estudo empírico, [OLS 86] citado em [CHO 2000], realizou testes com estudantes de aplicações matemáticas do terceiro e sexto nível e comparou testes administrados “no papel”, via computador e testes adaptativos via computador. Este estudo não encontrou diferenças significantes entre testes administrados “no papel” e via computador, também não encontrou equivalência entre os três testes em termos de ordem no ranking de pontuação, médias, dispersões e formas de distribuição.

Ferramentas comerciais que possuem como uma de suas características ou como função principal a avaliação, estão baseadas em soluções proprietárias, e seu custo é bastante elevado. Isto ocorre por exemplo, com softwares como o Question Mark Perception, WebCT e TopClass.

1.2 Organização

Uma vez que este trabalho está baseado na geração de avaliações para alunos em ambientes WBT, que possuem diversas características diferenciadas de avaliações aplicadas no ensino presencial, o capítulo 2 aborda aspectos inerentes à tecnologia de avaliações nestes ambientes, juntamente com as principais questões envolvidas neste tipo de ensino, demonstrando virtudes, falhas e características que foram consideradas para o desenvolvimento do restante do trabalho.

Como diversas ferramentas que possuem módulos para avaliações de alunos na Web com inúmeros recursos e características diferenciadas, o capítulo 3 apresenta os principais ambientes completos e ferramentas específicas que tratam destes aspectos. Neste capítulo, são expostas informações generalizadas sobre as ferramentas com enfoque principal sobre avaliação.

No capítulo 4, é realizada a descrição geral do AvalWeb, contendo considerações sobre o público envolvido em sua utilização e informações referentes à arquitetura e a modelagem conceitual do ambiente como diagrama entidade-relacionamento, dicionário de dados e demais recursos existentes.
No capítulo 5, são descritas informações técnicas relativas ao protótipo, além de exemplos de telas, relatórios e outros recursos essenciais.

Para validação ou simplesmente verificação de problemas e restrições nas ideias apresentadas, o protótipo desenvolvido foi testado através da aplicação de avaliações criadas com a ferramenta, em dois grupos de alunos de uma Universidade. O capítulo 5 descreve os resultados e a metodologia seguida nesses testes.

Finalmente, no capítulo 6 são apresentadas as conclusões do trabalho realizado e os trabalhos futuros possíveis de serem realizados a partir da modelagem e do protótipo criados.
2 WBT (Web-based Training)

- Distribuição do conhecimento em larga escala (para o mundo inteiro);
- Flexibilidade de ritmo;
- Aumenta o acesso ao aprendizado;
- Melhora o potencial de promoção;
- Maior flexibilidade de agendamento;
- Fornecendo vantagens competitivas para as instituições;
- Requer menos salas de aula;
- Redução dos custos de distribuição, pois pela Internet não há custos de impressão e transporte;
- Envolvimento de palestrantes externos que de outra forma não poderiam ser aproveitados;
- As correções e atualizações são bem mais simples, pois são realizadas em um único site, sendo imediatamente disponibilizado a todos os usuários da Internet;
- Ampla formas de entrega dos cursos, podendo ser através de textos, imagens, comunicação entre professores, professores e alunos, e entre alunos, etc.;
- A Internet facilita a escrita colaborativa;
- O aluno tem mais facilidade em dar o seu feedback;
- Possibilita uma melhor organização para professores, pois o controle é centralizado;
- Propicia o acesso assíncrono para pessoas que não têm tempo disponível para freqüentar aulas regulares com horários marcados.

Afora estas, existem outras tantas razões para que as pessoas busquem o ensino à distância, como por exemplo aspectos temporais, financeiros, abertura da possibilidade de realizar novos cursos e estabelecimento de contato com pessoas de diferentes níveis sociais, culturais e econômicos.

Um aspecto que deve ser levado em conta em sistemas de ensino à distância é seu contexto de aplicação. No decorrer deste trabalho, é enfatizado que o modelo desenvolvido é aplicável em ambientes WBT, pois embora existam determinados autores como [BEL 2000] e [GRE 99] que fazem a distinção entre treinamento e educação, esta sigla refere-se a uma tecnologia ampla de ensino na Internet, que age como um meio primário para entrega de material instrucional, fornecendo recursos para interação e administração de cursos via Web.

Por sua natureza, treinamento é diferente de educação, pois envolve objetivos de aprendizagem para uma tarefa e atividades específicas [BEL 2000]. No ambiente de trabalho, treinamento é feito de forma que o conhecimento ganho possa ser aplicado para performance de ações e comportamentos relacionados ao trabalho. Em contraste, educação é orientada em direções mais generalizadas e conhecimento abstrato que pode ou não ser diretamente atrelado a especificas tarefas ou ações. Por exemplo, um curso
denominado de “Gerenciamento de Sistemas de Informação” não está voltado para tarefas ou um trabalho específico para qualquer pessoa, e sim para conceitos, questões e problemas encontrados no gerenciamento de tecnologias da informação. Independentemente desta distinção, o modelo proposto neste trabalho pode ser aplicado em ambos os casos, pois qualquer que seja a abordagem, normalmente são realizadas avaliações da performance do aluno, tanto para atribuição de determinado nível de conhecimento, quanto para melhora no processo de ensino/aprendizagem, através da análise por parte do professor, das informações fornecidas pela ferramenta.

Como relata [PAS 99], existem atualmente, quatro concepções sobre o uso da informática na educação: Informática aplicada à educação (aplicativos para suporte administrativo); Informática na educação (tutorial); Informática educacional (ferramentas) e Informática educativa.

No decorrer deste trabalho, é explorada a denominada Informática Educacional, pois ela pensa o uso da informática como uma ferramenta auxiliar ao processo de ensino/aprendizagem, que pode ser aplicada de duas formas, (i) em complemento de cursos regulares ou (ii) para substituir avaliações que são ou seriam submetidas em aulas tradicionais.

Ambientes e ferramentas de ensino à distância estão constantemente em desenvolvimento, tendo em vista o número de pesquisas existentes nesta área.

O surgimento e contínuo desenvolvimento das tecnologias de redes de computadores estão mudando a maneira de trabalhar e estudar das pessoas em todo mundo. Quando e como aplicar estas novas tecnologias para a educação é um grande desafio para professores, pesquisadores e profissionais desenvolvedores de tecnologias de educação à distância [CHO 2000].

Com as vantagens proporcionadas pela informática, sistemas que possam ser aplicados na educação, como por exemplo avaliando alunos, são essenciais para contribuir para o desenvolvimento da área de ensino à distância, o que pode ser reforçado por [PAS 99] que afirma, “não se trata mais de discutir a conveniência de aplicar informática à educação; o questionamento atual segue a trilha de como usar os recursos na educação”.

Para o suporte e criação dos cursos a distância via Internet, existem os denominados ambientes de WBT ou EAD que são ferramentas que agregam recursos de comunicação (chat, correio eletrônico, grupos de discussão e compartilhamento de idéias), de administração de cursos, de avaliação e principalmente para disponibilização de conteúdo. Dentre eles pode-se mencionar o Aulanet desenvolvido pela PUC-RJ [LUC 97], o TopClass [WBT 98], TelEduc do Núcleo de Informática em Educação da Unicamp (NIED) e o WebCT [GOL 97], desenvolvido no Canadá.

2.1 Fatores limitantes de cursos WBT

Apesar de existirem muitos recursos e promessas na área de educação à distância, ainda existem diversos fatores limitantes, que podem fazer com que a tecnologia demore um pouco a ter o alcance desejado pelos profissionais da área.

Um destes fatores é que nos dias atuais é necessário conviver com pequenos atrasos na entrega dos pacotes, pois a maioria dos acessos à Web é realizado através de linhas discadas, onde a velocidade média da transmissão dos dados é considerada muito aquém do satisfatório, especialmente quando se trata da visualização de recursos
multimídia. Fluxos de vídeo, por exemplo, requerem uma conexão bem mais rápida do que a existente em linhas discadas normais [TRE 96]. Isto faz com que sejam utilizadas técnicas que minimizem estes problemas como streaming por exemplo, sem no entanto eliminar o problema, que permanece para grande parcela dos usuários da Internet.

O conjunto dos fatores limitantes faz com que os recursos que efetivamente podem ser aproveitados pelos alunos, em vários casos, não sejam os ideais, pois um vídeo, por exemplo, irá tardar certo tempo a ser levado para o cliente, fazendo com que diminua o interesse e muitas vezes cause sua desistência.

Além de problemas com a lentidão da Internet, existe ainda a possibilidade de ocorrerem problemas como falha no provedor, linha telefônica e outros similares, que impeçam os usuários de acessar o sistema. Por este motivo, deve existir muito cuidado quando são estipulados horários para utilização de aplicações. Neste caso, algum aluno pode ser prejudicado por fatores externos que fizeram com que seu acesso não pudesse ser realizado no horário marcado pelo professor. Sendo assim, é sugerido ao professor que quando possível, realize as avaliações em um laboratório com todos os alunos, minimizando a possibilidade de ocorrência deste tipo de problema.

Outros aspectos que devem ser levados em conta são os recursos disponíveis para acessar cursos à distância. Por maior que seja, o número de computadores existentes no Brasil atualmente está muito abaixo do mínimo desejável, o que pode ser considerado um fator impeditivo para grande maioria da população que não tem acesso a este tipo de tecnologia.

2.2 Avaliação em WBT

Avaliar é o processo caracterizado pela determinação do valor de algo, através de uma medida ou computação [BAT 2000].

Avaliação, no contexto educacional, refere-se aos processos que caracterizam o que o estudante sabe [TUR 2000]. As razões para realizar avaliações são bastante variadas. Considerando um curso, o objetivo pode ser explorar o que os estudantes estão aprendendo ou determinar uma nota.

O conceito de avaliação em cursos WBT pode ser caracterizado alternativamente como um processo de quantificação do conhecimento obtido pelo aluno, durante um curso ou determinado módulo, através de medidas mensuráveis que possam ajudar ou simplesmente atribuir certo grau ao nível atingido.

A avaliação deve ser contínua, de forma que seja possível a coleta sistemática de evidências por meio das quais determinam-se mudanças que ocorreram nos alunos e como elas ocorreram. Inclui uma grande variedade de dados que vão além do tradicional exame final de lápis e papel. Em EAD o processo de avaliação tem repetido estratégias de ambientes presenciais, usando provas escritas presenciais com diversos tipos de testes com questões de resposta aberta, além de trabalhos finais.

Os ambientes existentes para criação e administração de WBT utilizam uma série de tecnologias emergentes e possuem, no mínimo, uma boa quantidade de recursos para tratar da avaliação. Além destes ambientes que são genéricos, existem softwares específicos para criação de avaliações, tanto como complemento para cursos a distância quanto para utilização em cursos presenciais, como é o caso do Hot Potatoes e Perception, detalhados no capítulo 3.
Cabe salientar que avaliação é uma das mais importantes tarefas em todo processo de ensino e aprendizagem, além de causar maior impacto na maneira e conseqüência do aprendizado dos estudantes [KWO 99].

É considerada uma tarefa importante, porque os professores necessitam saber o que e quão bem os estudantes aprenderam [CHO 2000]. A avaliação pode ter a forma de um problema ou exame para testar o real aprendizado dos estudantes ou de um questionário, para investigar suas atitudes e reações.

De acordo com [BUG 92] e [BUN 89], citados em [CHO 2000], o uso de computadores para propósitos de testes tem uma história que atravessa mais de vinte anos. As vantagens de administração de testes pelo computador são bem conhecidas e documentadas e incluem tempo reduzido de verificação e feedback mais rápido.

Existem muitos debates na literatura sobre os métodos e paradigmas para avaliações [CAL 94], [HAM 93], [DRA 96] e [OLI 98]. Uma regra comum é permitir que o professor crie e gerencie todo o processo de avaliação do aluno. Também é possível escolher vários tipos de questões, tais como escolha simples, múltipla escolha, discursiva e trabalho [DIL 94].

De acordo com [TIN 96, Apud MAC 99], as ferramentas de avaliação on-line permitem a verificação de deficiências no aprendizado dos alunos pela aplicação de testes e exercícios. O uso de avaliações na Web fornece uma resposta imediata sobre o progresso do entendimento dos estudantes e, então, pode ajudar tanto professores quanto alunos, a tomarem ações em um tempo adequado antes que seja muito tarde [SEA 2000].

A avaliação tradicional de um curso é usualmente aplicada em seu final e somente então fornece informação histórica, que pode ser usada para futuras melhoras. Um mecanismo de resposta imediato após cada aula ou tópico pode identificar esta deficiência e permitir que o instrutor possa monitorar e assistir o aprendizado do estudante tomando a ação apropriada durante o curso.

Em alguns casos, os estudantes não conseguem saber se estão realmente aprendendo durante a realização do curso; para suprir este problema, é aconselhável o uso de auto-avaliações ao final de cada módulo, possibilitando assim que os alunos possam ter um melhor controle sobre seu próprio aprendizado.

Conforme sugerido por [AST 93, Apud FIN 2000], existem duas razões pelas quais “repetidas avaliações das mesmas qualidades nos mesmos estudantes realizadas em diferentes momentos” podem ter um valor significante. Primeiro, as informações resultantes são fornecidas “na preparação dos estudantes cedo o suficiente para permitir a oportunidade de ajustar seu ensino durante o curso” e segundo, os resultados fornecem “uma linha base para avaliação do quanto os estudantes de fato aprendem e o quando sua performance muda durante o tempo”.

Um plano de avaliação bem fundamentado possui três componentes: um enunciado dos objetivos educacionais, um válido conjunto de instrumentos para medir a realização destes objetivos e um plano para utilização dos resultados vindos da avaliação para informar políticas para melhorar o processo educacional [SAF 2000].

Sem um plano para avaliação contínua, os educadores ficam desprovidos de informações confiáveis e apropriadas para modificar um currículo existente para melhorar os resultados, melhorar medidas de avaliação ou modificar enunciados de objetivos educacionais. Desta maneira, um plano contínuo de avaliação originará a
articulação dos objetivos de ensino e realizações que refletem os objetivos apropriados ao curso e expectativas reais das habilidades dos estudantes.

A avaliação deve atender aos objetivos do curso; ser coerente com a linha pedagógica na qual está inserido; ter conteúdo claro e bem definido; possuir uma estrutura modular para facilitar o entendimento do tema; ter vocabulário de acordo com o nível do público que se pretende interagir; usar recursos de áudio, vídeo e/ou imagens sempre que possível, para tornar o visual mais atraente e agradável e conter testes de auto-avaliação, possibilizando ao aluno verificar seu nível de aprendizado [EDU 2000].

São disponibilizados em algumas ferramentas que tratam do aspecto avaliativo de alunos, como o Aulanet, Quiz Center e também no AvalWeb, módulos para definição dos objetivos da avaliação. Isto pode ser considerado fundamental, pois como afirma [MCG 98, Apud ROP 2000], a estratégia geral para aplicação de avaliações, envolve objetivos definidos, estratégias e resultados, identificando métodos de avaliação, inicializando processos avaliativos e aplicando os resultados para melhorar a educação. Reforçando esta afirmação, [BLO 83] cita que todo processo de ensino-aprendizagem baseia-se nos objetivos propostos pelo docente na etapa inicial, sendo o aprendiz guiado por ele, e talvez mal avaliado quando os seus interesses diante de um conteúdo programático não estejam na mesma proporção das metas do professor.

A importância de métodos e ferramentas para avaliação de estudantes, está presente em vários setores que utilizam o modelo de educação à distância. A realização de avaliações tem como foco primário instituições de ensino superior que se encontram atualmente em um ambiente bastante competitivo. Existe uma grande pressão tanto por parte das instituições de ensino quanto por entidades de certificação para incorporar um amplo conjunto de recursos no aprendizado de estudantes além de técnicas de avaliação em cursos e programas educacionais [MCG 2000].

Existem diferenças entre testar, medir e avaliar. Testar significa submeter a um teste ou experiência, isto é, consiste em verificar o desempenho de alguém ou alguma coisa; medir significa determinar a quantidade, a extensão ou o grau de alguma coisa, tendo por base um sistema de unidades convencionais e finalmente, avaliar é julgar ou fazer a apreciação de alguém ou alguma coisa, tendo como base uma escala de valores. A avaliação é um processo contínuo e sistemático, devendo ser planejada, fornecendo feedback e permitindo a recuperação imediata quando for necessário [HAY 97].

Existem inúmeros benefícios que podem ser obtidos com a aplicação de avaliações:
- Possibilita ao professor o conhecimento do grau de aprendizado que está sendo absorvido pelos alunos em função dos objetivos propostos;
- Define maneiras e formas para que discentes possam realizar uma auto-avaliação;
- Comunica de modo mais preciso sua intenção instrucional aos próprios alunos, aos pais e outros educadores;
- Permite que sejam escolhidas atividades e experiências de ensino-aprendizagem que sejam adequadas e relevantes, baseadas na análise de métricas obtidas no decorrer de avaliações previamente aplicadas;
- Proporciona o desenvolvimento de estratégias de ensino, através da análise estatística de resultados obtidos;
- Define o ponto inicial da instrução em cursos subseqüentes;
- Permite comparações dos resultados obtidos por grupos diferentes;
- Pode prever o sucesso em cursos subseqüentes;
- Possibilita que coordenadores possam definir padrões, concentrar-se em metas, monitorar a qualidade da educação, recompensar ou eliminar vários costumes, formular políticas, direcionar recursos incluindo pessoal e monetário, além de determinar os efeitos das avaliações [DIE 91];
- Para administradores e para a instituição, serve para identificar as virtudes e fraquezas de programas, designar prioridades, planejar e melhorar o ensino;
- A avaliação ajuda professores e administradores a realizarem diagnósticos individuais, monitorar o progresso dos estudantes, realizar avaliação e refinamento do currículo, motivar estudantes e determinar notas [DIE 91];
- Pais e alunos medem o progresso da avaliação para encontrar virtudes e fraquezas do estudante, determinar a responsabilidade da instituição e fazer informes educacionais;
- Com base nos resultados das avaliações, professores podem reforçar determinados tópicos do conteúdo através de aulas de recuperação;

Existem diversas teorias e abordagens quando o assunto é avaliação no ensino à distância, com suas características próprias e enfocando determinados aspectos para aferir o rendimento de um estudante no processo educativo [BAT 2000].

Não basta que sejam realizadas avaliações e fornecidas notas finais para os alunos. Para o melhor aproveitamento tanto dos alunos quanto dos professores, o sistema que testa o aluno deve fornecer informações que contribuam para melhora do ensino quando necessário. Um exemplo desta melhora é comentado em [BER 97], que afirma que a avaliação pedagógica tem uma importância fundamental, pois pode ser vista como a base para tomada de decisões, para que um professor adote atividades de reforço, modifique sua postura perante o aluno, forneça ajuda simples, melhore explicações, aprofunde questões, proporcione desafios, desenvolva episódios para a aprendizagem e inclusive considere o aluno apto em relação ao conteúdo ou habilidade trabalhados.

De acordo com [MEL 94, Apud BER 97], muitos fatores como a pouca ou quase nenhuma preparação de professores das áreas das Ciências Humanas para lidar com conhecimentos que se aproximem do quantitativo ou de raciocínios que se aproximem da base matemática levaram a uma crítica constante ou até à condenação do uso de testes. Mas, apesar destes fatores, os testes são o instrumento determinante do resultado da avaliação de desempenho do aluno.

Uma maneira óbvia pela qual o computador pode melhorar o processo de avaliação é em pontos onde a coleta e manipulação de números é necessária [HOP 98]. Portanto, uma das funções de computadores no processo de avaliação educacional é a utilização de sua capacidade de processar medidas numéricas de dados, coletados de forma primária em testes objetivos, para uso na avaliação de alunos.

Em 1971, [THO 71] descreveu uma história do “papel clássico do computador” para aumentar processos tradicionais de medida através de “testes computadorizados” e apontou que o computador pode facilmente gerar, armazenar, coletar, analisar e reportar
avaliações automaticamente. Vinte anos após, esta visão do papel do computador na avaliação foi moderadamente incrementada por [STA 91] no artigo “Uso do computador em testes na sala de aula” onde era incluída a habilidade de fornecer feedback detalhado para os estudantes sobre seus pontos fortes e fracos.

O aspecto avaliativo é uma característica que deve estar presente no ensino à distância. Um erro comum é avaliar ambientes WBT considerando apenas alguns de seus aspectos individuais de sucesso, como a quantidade e a qualidade nos recursos de mídia presentes [GON 96]. No entanto, o ensino a distância deve ser visto como um todo, levando-se em conta os inúmeros componentes envolvidos em sua implementação: a identificação das necessidades; a definição dos objetivos a serem atingidos; a seleção e organização do material didático; a elaboração dos meios instrucionais; a definição da estrutura a utilizar; a organização das condições de aprendizagem; e o esquema de avaliação da aprendizagem.

2.2.1 Aspectos locais e temporais para aplicação de avaliações em WBT

Quando é analisada a utilização de testes baseados na Web, as dimensões de tempo e local do teste podem ajudar a conceituar o uso do sistema.

Foram preparados por [CHO 2000], quatro conjuntos de testes conforme a tabela 2.1. O primeiro conjunto necessita que estudantes realizem o teste em uma localização fixa em um tempo específico, o que garante o alto grau de justiça do teste sob o ponto de vista dos estudantes.

<table>
<thead>
<tr>
<th>Tempo de aplicação</th>
<th>Local</th>
<th>Planilha preparada</th>
<th>Consulta</th>
<th>Situação apropriada para o teste</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Específico</td>
<td>Fixo</td>
<td>Um teste</td>
<td>Com / Sem consulta</td>
</tr>
<tr>
<td>2</td>
<td>Flexível</td>
<td>Fixo</td>
<td>Individual</td>
<td>Com / Sem consulta</td>
</tr>
<tr>
<td>3</td>
<td>Específico</td>
<td>Não-fixo</td>
<td>Um teste</td>
<td>Com / Sem consulta</td>
</tr>
<tr>
<td>4</td>
<td>Flexível</td>
<td>Não-fixo</td>
<td>Individual</td>
<td>Com consulta</td>
</tr>
</tbody>
</table>

Fonte: [CHO 2000]

O segundo conjunto requer que estudantes realizem o teste em um local fixo, mas o momento para realização é flexível. Estudantes podem ir para o local específico onde se encontram a avaliação quando sentirem que estão prontos. O terceiro conjunto de testes requer que estudantes realizem os testes em um momento específico mas o local do teste não é fixo. Estudantes podem até usar seus próprios computadores para realizarem os testes. O quarto conjunto não especifica momento nem lugar, desta forma, estudantes podem usar o teste para auto-avaliação e prática.

Vale a pena registrar que para evitar a possibilidade de estudantes passarem as respostas uns para os outros, por causa dos diferentes momentos de aplicação dos testes, como nos conjuntos 2 e 4, diferentes testes para estudantes individuais devem ser
preparados [CHO 2000]. Quando são preparadas avaliações diferenciadas para estudantes da mesma turma, existe o risco de cometer injustiças, pois determinadas questões podem ser mais difíceis do que outras, eliminando o equilíbrio que deveria existir. Através do modelo proposto neste trabalho, este risco é minimizado ou eliminado, pois existe a tendência de haver equilíbrio entre as questões, mesmo que sejam diferenciadas para alunos da mesma turma, pois é levado em conta o nível de dificuldade das mesmas.

Se forem aplicados os conjuntos de testes 3 e 4, devem ser com consulta, porque a supervisão pode não estar disponível. Do ponto de vista dos usuários, a flexibilidade dos testes em termos de tempo de localização aumenta do conjunto 1 ao 4. Sob o ponto de vista dos desenvolvedores, entretanto, a dificuldade do desenvolvimento de sistemas de avaliação aumenta do conjunto 1 ao 4 [CHO 2000]. O modelo proposto pode ser aplicado em todos os conjuntos citados na tabela 2.1.

Outra questão a ser analisada é a quantidade de questões submetidas por página aos alunos: fica a dúvida se o mais propício é enviar todas as questões em um formulário somente ou uma a uma separadamente. Em estudos realizados [WIS 89], notou que os testes baseados em computador usualmente não incluem três características que existem em avaliações convencionais, utilizando “caneta e papel”: (i) permite aos alunos pularem questões e voltar a respondê-las depois, (ii) rever previamente as questões completadas; e (iii) permitir a modificação de questões respondidas anteriormente. Para amenizar dificuldades como estas, a ferramenta apresentada cria todas as questões da avaliação em um formulário, permitindo ao aluno a visualização de todas as questões através da barra de rolagem da janela do browser.

Esta característica deixa em aberto a possibilidade de que os alunos possam alterar as respostas já inseridas. O mesmo não ocorre com questões adaptativas, com nível de dificuldade progressivamente menor ou maior, pois as mesmas são modificadas de acordo com a resposta anterior do aluno. Em questões deste tipo, é apresentada somente uma questão por vez para o aluno, não existindo a possibilidade de voltar para responder questões anteriores.

2.2.2 Vantagens e desvantagens da avaliação em WBT

O aprendizado como qualquer outra área, está intimamente ligado com a motivação de seu público-alvo; quanto melhor for trabalhado este aspecto, melhor será o resultado. Neste item, a avaliação entra como um fator importante, pois é uma forma de incentivar o aluno a cumprir o cronograma e ao mesmo tempo ter uma resposta para saber se realmente está aprendendo.

Existem inúmeras vantagens e desvantagens na aplicação de instrumentos avaliativos através da Internet, que irão variar um pouco dependendo da forma de aplicação e recursos utilizados nas avaliações.

Dependendo da ferramenta utilizada, existem diferenças fundamentais entre avaliações realizadas no papel, da forma tradicional, ou na Web. Algumas diferenças marcantes podem ser visualizadas na tabela 2.2.
TABELA 2.2 - Comparativo entre avaliações tradicionais e via Web

<table>
<thead>
<tr>
<th></th>
<th>Papel</th>
<th>Baseada na Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefícios</td>
<td>- Rápida preparação dos questionários</td>
<td>- Estudantes podem acessar avaliações já realizadas a qualquer momento;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Fácil de distribuir, coletar e analisar dados;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Não necessita esforço para distribuição;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Facilidade de trabalhar com dados digitais;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mais fácil e rápido para estudantes responderem;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- O computador pode verificar a integridade e validade dos dados, além de exigir dados para campos obrigatórios;</td>
</tr>
<tr>
<td>Desvantagens</td>
<td>- Respostas forçadas podem ter resultados contaminados;</td>
<td>- Taxa de resposta algumas vezes é mais demorada do que a taxa de resposta no papel;</td>
</tr>
<tr>
<td></td>
<td>- Quantidade de papel</td>
<td>- Inicialmente envolve mais preparação;</td>
</tr>
<tr>
<td></td>
<td>- Requer tempo para distribuir, coletar e gerenciar pilhas de papéis;</td>
<td>- Pode existir preconceito – tanto negativo quanto positivo;</td>
</tr>
<tr>
<td></td>
<td>- Muito tempo é consumido para inserir os dados e depois para processar e analisar a informação;</td>
<td>- Possíveis dificuldades técnicas se ocorrem problemas com o sistema;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Em avaliações que possam ser resolvidas sem a presença do professor, não é possível garantir a autenticidade do aluno;</td>
</tr>
</tbody>
</table>

Fonte: [ING 2000].

Além das vantagens citadas na tabela 2.2, existem outras vantagens essenciais, específicas em avaliações on-line que, dependendo da ferramenta utilizada, são [ROD 2000] e [BEL 2000]:

- Avaliar vários aspectos ao mesmo tempo;
- Possibilitar o julgamento objetivo e rápido;
- Eliminar o aspecto subjetivo da correção e a interferência das características pessoais do aluno;
- Submissão dos resultados a tratamento estatístico de forma mais automatizada;
- Reformulação de estratégias de ação com base no histórico das avaliações;
- Independência geográfica;
- Acompanhamento centralizado de resultados;
- Fácil utilização;
- Não depende de aspectos temporais;

Como afirma [SCO 2000], baseado em [COO 89], se for realizada, a distribuição de avaliações na Web e caso existam processos que melhorem a qualidade das avaliações, a construção da confiança entre instituição e estudantes será afetada em um curto período de tempo.

As barreiras para o uso de avaliações baseadas em computador são a preparação inadequada dos testes e falha para implementação e manutenção destes testes [BUG 96].
Em outras palavras, alguns fatores como o design, desenvolvimento, administração e características do usuário devem ser levados em consideração quando os computadores são usados para testar.

Também existe o risco de haver o compartilhamento das respostas entre colegas nas avaliações que valem nota, invalidando o resultado final. Esta é uma questão que deve ser resolvida, já que normalmente os alunos estão em ambientes sem controle de um professor e podem ter acesso a colegas, livros e até mesmo à própria Internet.

 Existem algumas maneiras para resolução deste problema: uma delas é a criação de avaliações que façam com que o aluno utilize o raciocínio, não podendo retirar respostas prontas de um livro; outra maneira é marcando um horário previamente, com tempo delimitado para que a avaliação possa ser realizada, diminuindo a possibilidade de “cola” entre colegas, pois a avaliação pode ser executada em um laboratório com um supervisor ou professor, por exemplo.

 Algumas outras desvantagens existentes em diversas ferramentas para avaliação via Web são:

- A elaboração das questões é mais difícil e demorada do que em uma avaliação convencional que possua simplesmente perguntas;
- Não avaliam as habilidades de expressão;
- Restringem as respostas dos alunos;
- É necessário que todo público envolvido tenha acesso a computadores;
- Existem custos para acesso à Internet;
- É necessário material digital;
- Dependência do software no qual foi construída a avaliação;
- É necessário treinamento para o instrutor;
- Custo de implementação aliado aos demais custos existentes;
- Possibilidade de vírus;
- Qualidade do material;
- Questões de direitos autorais;

 Testes na Web dependem totalmente das redes de computadores, que determinadas vezes podem apresentar problemas tecnológicos [CHO 2000].

 Em casos isolados, a privacidade das informações submetidas ao ambiente é um fator limitante para o uso do sistema por parte dos alunos. Isto pode ser verificado baseando-se em experiências realizadas por [SCO 2000], onde vários estudantes comentaram que não realizaram determinada avaliação baseada na Web proposta pelo professor, com medo de que seu número da seguridade social fosse redistribuído.

 Conforme apresentado na tabela 2.2, a mudança de cultura também deve ser considerada. Em sua grande maioria, estudantes estão acostumados a realizar avaliações baseadas em papel, portanto, um processo baseado na Web é uma mudança cultural maior [SCO 2000]. A meta da melhora de avaliações deve ser capaz de fazer com que este processo pareça tão natural quanto a checagem de um e-mail.
2.2.3 Auto-avaliação

A auto-avaliação pode ser utilizada tanto em salas de aula convencionais como em salas de aula virtuais. Pode ser entendida como auto-avaliação, uma nota atribuída pelo aluno a si mesmo, em determinado momento do processo de ensino-aprendizagem.

Nas salas de aula virtuais este processo pode ser realizado através do feedback que o professor dá ao aluno quando obtém os resultados de suas avaliações ou de maneira automática, com base em informações inseridas previamente pelo professor que serão apresentadas aos alunos após a resposta de uma ou várias questões.

Como afirma [HAY 97], “estamos constantemente avaliando nossas próprias atitudes, habilidades, em interesses e aptidões, para poder melhorar o nosso desempenho e obter êxito nas atividades realizadas”. A capacidade de se auto-avaliar também depende da aprendizagem e por isso pode ser desenvolvida e aperfeiçoadada.

Na auto-avaliação, o estudante determina seus próprios objetivos, continuamente controla o trabalho, determina pessoalmente os critérios e avalia por si mesmo o resultado final. Auto-avaliação é necessária para o aprendizado efetivo e também para aumentar a evidência de que estudantes estão aptos a realizar julgamentos sobre seu próprio aprendizado [KWO 99].

Para começar o desenvolvimento de um instrumento para auto-avaliação, [DUZ 2000] realizou uma revisão da literatura que revelou dois tipos primários de propensão, melhora dos alunos que se auto-avaliaram e comparação com colegas que tiveram desempenho superior, o que pode distorcer auto-avaliações. A melhora do aluno é apreciada por ele e pode ser despertada pela ameaça para a auto-estima [MAB 82] e [STE 89].

A comparação com colegas de desempenho superior é uma tendência geralmente positiva para que o aluno se auto-influenicie, mas em alguns casos é negativa, especialmente quando envolve comparações sociais com colegas. Os efeitos destas propensões podem ser reduzidos e respondidos com segurança e validade por [DUZ 2000]:

- Uso de linguagem explícita compartilhada por alunos e professores na definição das características e critérios utilizados para avaliação;
- Correlacionar auto-avaliações com a pontuação de múltiplos avaliadores;
- Criar questões que pergunte aos alunos a taxa de performance passada, e não observem a habilidade ou expectativa de performance futura;
- Fazer comparações sociais com um grupo explícito ou indivíduos conhecidos (por exemplo, membros da mesma turma do aluno) quando comparações sociais são necessárias;

O primeiro dos critérios citados é relatado para assegurar a validade, enquanto os outros três fornecem segurança.

O AvalWeb, além de efetuar a avaliação de alunos, prevê a aplicação de auto-avaliações, com características diferenciadas das avaliações, pois pode ser obtido feedback automático, visando a melhora na aprendizagem por parte dos alunos. A descrição detalhada deste módulo está presente no capítulo 4.4.9.
2.2.4 **Tipos de avaliação**

Existem três tipos de avaliação de performance dos alunos, sendo que o método de avaliação pode ter um determinado grau de impacto que pode definir os casos nos quais a tecnologia *WBT* pode ou deve ser substituída pela instrução tradicional [BEL 2000].

2.2.4.1 Avaliação Contínua

Neste modelo, instrutores determinam avaliações contínuas e retorno para os alunos sobre sua performance durante o curso. Este modelo pode ser executado em ambientes *WBT* mas necessita de ferramentas síncronas e *software* de comunicação. A efetividade da avaliação contínua depende da riqueza da maneira usada para interação. Um exemplo de avaliação contínua pode ser citado através de uma aula de natação, onde o professor corrige continuamente, se necessário, os movimentos do aluno.

2.2.4.2 Avaliação Periódica

Pode ser utilizada tanto síncrona como assincronamente, dependendo da complexidade do que será avaliado. Em uma típica avaliação assíncrona os métodos incluem múltipla escolha, preencher lacunas, respostas curtas, questões de experimento, pesquisa de artigos e projetos individuais que ocorrem em torno de um tempo específico.

Avaliações assíncronas são facilmente convertidas para um ambiente de ensino à distância. Avaliações periódicas síncronas incluem apresentações orais individuais ou em grupo de projetos.

2.2.4.3 Avaliação de Certificação

Este modelo envolve o emprego de um exame no término da instrução, que pode ser um curso ou todo currículo. Os alunos devem demonstrar que os objetivos instrucionais foram atingidos através da realização do exame.

2.2.5 **Funções da avaliação**

Quando se aborda a avaliação do processo ensino-aprendizagem, é realizada uma referência à verificação do nível de aprendizagem dos alunos, isto é, o que os alunos aprenderam. Basicamente, a avaliação apresenta três funções, que são controlar, classificar e diagnosticar. Associadas a estas três funções, existem respectivamente as modalidades de avaliação formativa e somativa [BEL 2000] e [BAT 2000], que devem ser acrescidas de um terceiro tipo que é a diagnóstica [HAY 97].

Avaliar pode ter diversas funções, sendo que as duas principais são as que servem para determinar classificação ou nota (avaliação somativa) e fornecer *feedback* para guiar ou aperfeiçoar comportamentos ou costumes (avaliação formativa) [WOL 97].
O modelo proposto neste trabalho pode ser aplicado às três funções da avaliação, cabendo ao professor definir as maneiras e momentos indicados de utilizá-lo, de forma que as funções da avaliação possam ser corretamente aplicadas.

2.2.5.1 Avaliação Somativa

Dar notas aos estudantes é uma forma familiar de avaliação em educação [WOL 97]. Os professores podem atribuir números ou letras para indicar o desempenho do estudante. Da mesma maneira o objetivo de exercícios de avaliação somativa é a apropriada identificação de um escore ou nota.

Informações sobre a avaliação somativa são coletadas ao final da instrução para serem utilizadas por professores para determinar o valor da instrução recebida pelo aluno [HOP 98].

A avaliação somativa possui uma função classificatória sendo conceituada como uma avaliação final de um produto, serviço ou processo. Realiza-se ao final de um curso, período letivo ou unidade de ensino e consiste em classificar os alunos de acordo com níveis de aproveitamento previamente estabelecidos, geralmente tendo em vista sua promoção de uma série para outra ou de um grau para outro, pois totaliza os resultados de um estudo completado.

Através deste tipo de avaliação pode-se constatar se os objetivos estabelecidos foram alcançados pelos alunos e também fornecer dados para aperfeiçoar o processo de ensino-aprendizagem [HAY 97]. Posto que a avaliação é realizada em contínuas bases através do ciclo de vida, o tipo mais apropriado para avaliação em projetos de ensino à distância é formativa; no entanto, é essencial que também sejam realizadas avaliações somativas a fim de atribuir determinado grau de conhecimento ao aluno [WOL 97].

2.2.5.2 Avaliação Formativa

A avaliação formativa busca melhorar habilidades e comportamentos [WOL 97]. Por exemplo, estudantes podem receber feedback sobre como melhorar sua escrita; poderão informar-se sobre o uso exagerado de frases específicas; ou desenvolvedores de software poderão receber dados indicando áreas comuns de confusão de usuários.

Em um nível mais amplo, a avaliação formativa pode sugerir maneiras para melhorar a organização geral do curso ou metodologia. Entretanto, como o aprendizado, ensino e desenvolvimento de software envolvem um constante processo de refinamento, os resultados da avaliação formativa podem ser independentes do nível atual de desempenho.

O propósito primário da avaliação formativa é para melhorar, produtos, serviços ou processos de acordo com o seu desenvolvimento. A avaliação formativa com função de controle, é realizada durante todo o decorrer do período letivo, com o intuito de verificar se os alunos estão atingindo os objetivos previstos, isto é, quais os resultados alcançados durante o desenvolvimento das atividades [ALB 95]. Neste enfoque, a avaliação formativa visa, fundamentalmente, "determinar se o aluno domina gradativamente e hierarquicamente cada etapa da instrução", porque "antes de prosseguir para uma etapa subsequente de ensino-aprendizagem, os objetivos em questão, de uma ou de outra forma, devem ter seu alcance assegurado".
É principalmente através da avaliação formativa que o aluno conhece seus erros e acertos e encontra estímulo para um estudo sistemático.

Essa modalidade de avaliação pode também ser utilizada como um recurso de ensaio e como fonte de motivação, tendo efeitos altamente positivos e evitando as tensões que usualmente a avaliação causa. Nesse sentido, a avaliação pode servir como meio de controle de qualidade, para assegurar que cada ciclo novo de ensino-aprendizagem alcance resultados tão bons ou melhores que os anteriores.

A avaliação formativa possui uma longa e rica tradição na avaliação de tecnologias instrucionais. Existem vários modelos úteis na avaliação formativa que podem ser usados para realizar avaliações contínuas. Cada um destes modelos fornece a percepção de variáveis consideradas em um ou mais passos do processo de avaliação [WIL 88].

Informações sobre a avaliação formativa são usadas como feedback para melhorar o processo de ensino [HOP 98].

Para realizar uma eficiente avaliação formativa, são recomendados alguns passos essenciais [SLY 98]:

Definir os objetivos da avaliação: Por exemplo, podem ser avaliados o instrutor, material fornecido, currículo, módulos do curso e transferência de aprendizado.

Selecionar o escopo da pesquisa: devem existir variáveis que identifiquem “como é” o ambiente, onde o estudante está inserido, a instituição, o aluno, o curso e o(s) tipo(s) de tecnologia(s) de ensino à distância aplicada(s). Estudos de avaliação não devem capturar e analisar todas estas variáveis, mas o avaliador deve entender que estes são fatores que atuam um sobre o outro para influenciar alunos no ensino à distância. Um programa de avaliação deve abertamente definir quais destas categorias de variáveis estão sendo mensuradas, quais estão sendo controladas e quais são as consequências das variáveis.

Selecionar o método de coleta de dados: Existem muitos tipos diferentes de métodos de coleta de dados formativos, que incluem questionários individuais, entrevistas pessoais, grupos de concentração e observação.

2.2.5.3 Avaliação diagnóstica

Existe outro tipo de avaliação que é denominada de diagnóstica, pois tem como objetivo realizar uma pré-avaliação dos alunos, podendo identificar com isto dificuldades específicas de aprendizagem de forma que suas causas possam ser encontradas [HAY 97].

A avaliação diagnóstica é aplicada com a intenção de constatar se os alunos apresentam ou não o domínio dos pré-requisitos necessários, isto é, se possuem os conhecimentos e habilidades imprescindíveis para as novas aprendizagens.

Também é utilizada para caracterizar eventuais problemas de aprendizagem e identificar suas possíveis causas, em uma tentativa de eliminá-los. A recomendação é que este tipo de prova seja aplicada no início de ano, semestre ou ainda unidade de ensino [HAY 97].
2.2.6 Abordagens complementares de avaliações em WBT

Os conceitos de avaliações via computador, são constantemente ampliados através do surgimento de novas técnicas e metodologias, que levam em conta não somente as respostas dos alunos, mas diversas características adicionais, como por exemplo, a utilização do material instrucional.

Existem teorias e abordagens diversas com relação a maneiras complementares de realizar avaliação de alunos em cursos à distância, além dos tradicionais testes, utilizados em ferramentas de WBT que tratam de avaliação.

As abordagens de avaliação existentes para o ensino a distância podem ser classificadas em testes objetivos convencionais, testes com auxílio do computador, testes computadorizados adaptáveis, avaliação de desempenho simples através da composição de exames, avaliação de desempenho complexa e autêntica (tarefas ou projetos, envolvendo resolução de problemas) e avaliação de documentos [SUE 2001].

Pode-se realizar a avaliação por meio de sistemas inteligentes, para possibilitar a correção ou o redirecionamento do processo educativo, tentando tratar o discente de forma personalizada, uma das principais problemáticas enfrentadas quando o ensino não é presencial, devido justamente à ausência de contato entre educador e educando [BAT 2000].

A avaliação através da utilização de agentes [ROD 2000], cuja proposta está envolvida no contexto do projeto SEMEAI (SistEma Multiagente de Ensino Aprendizagem na Internet) da UFRGS, envolve aspectos ligados ao comportamento do aluno e a maneira de mensuração por agentes sensores, de forma que o processo ensino-aprendizagem possa ser melhorado.

A alternativa da utilização de Sistemas Tutores Inteligentes tem como uma de suas abordagens a utilização de métodos de ensino, não de forma genérica, mas de forma individualizada, de acordo com o ritmo e as características individuais de cada aluno [BER 97], [GIR 98].

Determinar quanto e quão bem os estudantes estão aprendendo é a definição de avaliação apresentada por [WIS 89], que complementa alegando que, na sala de aula, os professores podem observar as atitudes, comentários, expressões da linguagem facial e corporal. Quando se considera o fator distância, o instrutor não terá mais o convívio com os alunos, a relativa homogeneidade do grupo, o feedback durante as aulas, nem a oportunidade de conversar com os estudantes individualmente. Neste sentido, a abordagem utilizada para avaliação deve possibilitar a verificação de aspectos como: a satisfação do estudante com o método usado, a clareza do conteúdo do curso, a maneira como o tempo está sendo empregado no curso, a efetividade do ensino e como melhorá-lo.
3 Estado-da-arte

Existem diversos ambientes e ferramentas específicas que abordam como complemento ou de forma única o aspecto de avaliação dos alunos. Para melhor embasamento, foram analisados produtos considerados líderes em seu segmento de mercado com fortes características avaliativas.

Através dos ambientes e ferramentas apresentados, pode-se observar que existem diversos enfoques sobre a questão da avaliação, mas de todas as formas, também há determinado padrão nas avaliações, como os tipos de questões apresentadas para os alunos.

Os principais sistemas existentes de avaliação computadorizada são parte de ambientes Computer Based Training (CBT) e pacotes de autoria multimídia como o Asymetrix Toolbook [TIN 97].

Estes sistemas normalmente vêm com interface gráfica de autoria e suporte a bancos de dados de cursos, no entanto, cada um destes sistemas possui seus próprios “padrões” (por exemplo, plataformas, linguagens de autoria, representação interna dos dados). Além disto, são muito caros para serem utilizados em larga escala, como no ambiente universitário e seus custos de desenvolvimento também são excessivamente altos.

Este capítulo apresenta o resultado do estudo realizado sobre ferramentas com enfoques iguais ou similares ao modelo proposto neste trabalho, de maneira que fique clara a abordagem e a contribuição do modelo apresentado.

3.1 Avaliação em ambientes completos

São considerados ambientes completos para confecção de cursos à distância aqueles que possuem inúmeras características, como possibilidade de criação e inserção de material instrucional no próprio ambiente, ferramentas adicionais, como por exemplo, quadro de avisos e várias outras que compõe um ambiente que consiga reunir os requisitos mínimos para ensino via Web. Um dos recursos oferecidos pelos ambientes, é a avaliação dos alunos que realizam os cursos, detalhadas a seguir.

3.1.1 Aulanet 1.2

Em 1997, o Laboratório de Engenharia de Software (LES) da PUC-Rio implementou a primeira versão do Aulanet™, um ambiente educacional baseado na Web [CHO 98]. As avaliações neste ambiente são gerenciadas pela ferramenta Quest que gera e corrige provas automaticamente.

Quest é uma ferramenta de avaliação que está incorporada no núcleo do sistema e seu propósito é suportar o processo de avaliação educacional através da Web capturando os resultados deste processo.

A arquitetura do Quest é baseada na Web, onde toda interface foi desenvolvida utilizando programas CGI. Os principais tipos de questões são de múltipla escolha com cinco ou mais alternativas de resposta, verdadeiro/falso e completar. Além de escolher um desses estilos de prova, o professor também pode escolher o tipo de questão que
quer utilizar: de Conhecimento, Compreensão, Aplicação, Análise, Síntese ou Avaliação.

Quando é escolhido um tipo de questão, automaticamente uma janela é aberta com a explicaçãode que significa aquele tipo de questão. Após selecionar o estilo e o tipo de cada questão, deve ser colocado o enunciado, o gabarito e o valor de cada uma delas. Baseado nessas informações, o Aulanet fará a correção automática da prova do aluno.

A ferramenta oferece facilidade de edição de provas como a movimentação da posição das questões e inserção de questões em provas já existentes. É possível também reeditar de maneira simples provas já existentes com a opção “Salvar Como”, mantendo o conteúdo da prova original. Este recurso está presente na maioria dos ambientes analisados.

Enquanto edita uma questão, o professor pode definir alguns atributos, como por exemplo o tópico do material instrucional que será coberto e o nível de domínio cognitivo. Estes atributos serão úteis quando forem apresentadas as estatísticas geradas pela correção automática da prova, fornecendo informações adicionais para estas estatísticas.

Una vez que a ferramenta é de auto-avaliação, o processo de correção das provas é feito automaticamente. O professor somente precisa especificar as respostas corretas no momento da edição. O mecanismo de correção armazena todos os dados necessários para criar os resultados estatísticos apresentados para o professor e também informações sobre o desempenho, fornecidas on-line para os estudantes.

Normalmente, os resultados de uma avaliação estão disponíveis para o professor, que tem uma maneira de recuperar a qualquer momento a informação sobre qualquer avaliação do curso.

São armazenadas informações para serem apresentadas a qualquer momento para os estudantes. Estas informações incluem seu total de pontos, número de questões da prova, número de questões respondidas corretamente pelos estudantes, quantidade de
respostas erradas, tempo transcorrido durante a resolução da avaliação, os tópicos relativos às questões da prova, os tópicos das questões que os estudantes responderam incorretamente e uma opção para os estudantes revisarem a prova.

O professor pode ter muitas informações estatísticas derivadas da correção de uma prova. Estas estatísticas incluem:

- **Lista de notas**: Apresenta as notas de cada estudante com uma opção para revisar as respostas de todos os estudantes. Esta maneira possui o mesmo princípio de avaliações em salas de aula convencionais;

- **Estatísticas baseadas nos tópicos**: A interpretação destas estatísticas pode ser útil para verificar se o material entregue no curso combina com as necessidades e objetivos dos estudantes e do curso;

- **Estatísticas baseadas no domínio cognitivo**: Estas estatísticas mostram se o estudante está construindo o conhecimento corretamente e apontam as habilidades cognitivas nas quais os estudantes apresentam maiores dificuldades. Após esta verificação, o professor pode modificar o conteúdo do curso para resolver estes problemas, ajudando realmente aos estudantes a relembrar uma idéia, entendê-la, colocá-la em prática, verificar as partes componentes, utilizá-la para construir outra idéia e avaliar seu uso. Este recurso não está presente em nenhum dos outros ambientes analisados.

- **Estatísticas por questão**: Mostram as preocupações que os estudantes tem em resolver cada uma das questões da prova. Pode ser utilizada para ver a média de dificuldade das questões e como uma referência cruzada com outras estatísticas.

- **Resultados-padrão**: Envolvem o cálculo da média de escores e informações sobre a variação dos níveis mais altos aos mais baixos – o desvio padrão. A média dos escores deve ser concluída com seu desvio padrão, e lista dos escores deve conter os valores mais altos e baixos possíveis. Por exemplo, “35 estudantes realizaram a prova, os possíveis escores estão na faixa de 0 a 100, com os estudantes obtendo notas de 32 a 95 (média do escore: 72, desvio padrão: 6.1)”. Para incluir uma prova, o professor deve preencher dados, como o nome da prova, uma breve descrição da prova e a data a partir da qual o professor deseja disponibilizá-la aos alunos. Após o término de construção da prova, pode ser realizada sua publicação imediatamente, ou ainda ser formulada uma prova no início do mês e somente disponibilizada ao final do mês. No entanto, não é possível restringir determinada data ou horário para realização da avaliação.

3.1.2 TopClass

O servidor TopClass fornece um ambiente de sala de aula virtual para gerenciar todos os aspectos de conteúdo e da própria sala de aula com flexibilidade, em um ambiente de aprendizagem na Web [ROD 2000].

O sistema pode possuir três tipos de usuários, o estudante, instrutor e administrador.

Existem ferramentas que possibilitam ações complementares para o professor, como fornecer ao aluno material adicional para estudo na forma de uma página de
reforço, enviar mensagem ao professor indicando quais alunos não atingiram a nota mínima aceitável nos testes, permitir que estudantes que obtiveram as notas anteriores altas pulem certos conteúdos que foram programados pelo professor e condicionar o acesso a novos cursos de acordo com as notas anteriores obtidas pelo aluno.

O servidor *TopClass* inclui um conjunto de ferramentas que auxiliam o professor no acompanhamento do progresso dos alunos pelo curso oferecido. O monitoramento pode ser realizado individualmente ou por relatórios da turma inteira, que podem ser exportados para arquivos de uma planilha eletrônica.

![Tela de exemplo com questões no TopClass - [WBT 2001](https://example.com)](image)

FIGURA 3.2 - Tela de exemplo com questões no *TopClass* - [WBT 2001].

O ambiente possui um módulo de submissão e correção de testes, onde as avaliações geradas no sistema podem ser automaticamente corrigidas ou enviadas para posterior correção pelo professor [MAC 99]. Os alunos podem revisar a correção das provas, bem como acessar os comentários feitos pelos professores.

O sistema automatizado de correção também pode tomar ações especiais baseadas nas notas obtidas pelo aluno, como indicar material extra de estudo, ou só permitir o acesso a determinado material instrucional se o aluno obteve uma nota mínima nos testes. São também permitidas configurações de ações especiais ao final dos testes, como indicar novos estudos para alunos com deficiência ou automaticamente enviar um aviso para o professor.
Os testes podem conter oito tipos diferentes de questões, incluindo verdadeiro / falso, múltipla escolha, resposta em forma de texto, booleano, imagens clicáveis, e outros, criadas através do TopClass Publisher.

O ambiente também permite testes, conjuntos de questões e questões a serem armazenadas como objetos de ensino separados, tornando mais fácil o uso destes objetos em múltiplos cursos. Os testes podem ser corrigidos automaticamente ou enviados para o professor atribuir a pontuação desejada.

O ambiente permite certificação formal e o acompanhamento para adaptar caminhos de aprendizagem baseados no progresso individual do aluno.

3.1.3 WebCT

O WebCT é uma ferramenta que facilita a criação de um ambiente educacional baseado na Web. Pode ser usado para criar cursos on-line completos, ou como apoio para cursos comuns. Foi desenvolvido pelo departamento de Ciências da Computação da Universidade de British Columbia, no Canadá [BAR 98].

Com este ambiente podem ser criados exercícios e testes on-line com temporizador e possibilidade de correção automática [WEB 2001]. Uma explicação pode acompanhar cada resposta do aluno, indicando o porquê do erro ou fornecendo pistas de como responder corretamente a questão. Cabe salientar que o sistema não mantém um banco de dados com as notas dos alunos, os exercícios não são utilizados para avaliação formal, como uma prova final de curso.
FIGURA 3.4 - Exemplo de questão apresentada ao aluno - [WEB 2001].

O Question Editor pode ser utilizado para gerar questões associadas ao conteúdo da página corrente. É uma espécie de mini-teste que não gera notas para os alunos. Seu objetivo é reforçar as ideias apresentadas na página atual.

Cada página pode conter um número ilimitado de questões. Além disso, cada questão pode ter um número ilimitado de alternativas, porém apenas uma será a correta.

No momento de sua criação, as questões serão formatadas em HTML possibilitando a utilização de qualquer tag e também permitindo a inclusão de imagens através da diretiva IMG SRC="nome_do_arquivo.gif". Para que possam ser criadas provas para avaliar o aluno, deverá ser incluído o ícone referente à avaliação na homepage.

FIGURA 3.5 - Exemplo de questão de auto-avaliação - [WEB 2001].
Na adição das primeiras questões ao sistema, o WebCT retorna uma mensagem dizendo que antes de criar questões é necessário criar pelo menos uma categoria. Por exemplo: poderá ser criada uma categoria de questões básicas, outra de questões intermediárias e uma outra de questões complicadas. Quando for montada a prova, o professor pode escolher por selecionar questões de todas as categorias existentes ou somente de uma. Depois de criadas as categorias, deverão ser criadas questões para cada uma delas. Existem quatro tipos de questões que podem ser criadas: Multiple Choice (múltipla escolha), Matching (associar colunas), Paragraph (respostas longas) e Short Answer (respostas curtas, normalmente uma palavra). Na mesma categoria podem existir os vários tipos de questões.

Após sua inserção, todas as questões criadas para determinado curso são apresentadas em uma tabela, bastando ao professor selecioná-las para adicionar à prova desejada. Depois de adicionadas, as questões vão sendo mostradas de forma que se tenha uma visão geral da avaliação e onde devem ser inseridos os valores de cada questão.

Ainda existem outras possibilidades de configuração como habilitar ou desabilitar a prova, configurar o tempo de duração e colocar mensagem no término da prova.

3.2 Ferramentas específicas para geração de avaliações

Além dos ambientes WBT, que possibilitam a criação de cursos completos na Web sendo alguns de seus módulos utilizados para avaliação, existem sistemas que realizam somente esta tarefa, sendo que são apresentadas neste trabalho três ferramentas específicas que contêm a abordagem similar à pretendida no modelo proposto.

3.2.1 Quiz Center

Um dos projetos com maior sucesso do programa de tecnologia educacional da universidade de Maui, no Hawai, foi o Quiz Center, que é uma ferramenta com serviços para avaliação on-line [SHA 98].

Foi inicialmente lançado em agosto de 1996, como um pacote livre para download que deveria ser instalado no computador local via servidor [SHA 98]. Ainda que mais de uma centena de instituições tenham efetuado o download do software durante o ano seguinte, foi descoberto com surpresa que muitos professores envolvidos em educação a distância não puderam utilizar a ferramenta porque não tinham acesso ao servidor Web de sua instituição. Embora suas instituições tenham se comprometido em criar programas de educação à distância utilizando a Internet, não forneceram a infraestrutura apropriada. Mantendo as intenções de disponibilizar a ferramenta, o Quiz Center foi transformado em um serviço on-line gratuito para educadores que desejavam integrar avaliação em seus cursos de educação à distância.

O Quiz Center fornece mecanismos para criação instantânea e correção de testes baseados na Web sem a necessidade de conhecimentos em programação HTML. Através de uma interface simples, baseada em formulários, o usuário informa dados sobre a questão (tamanho, tipo, etc.) seguidos pela própria questão e texto com resposta. Com esta informação, o QuizCenter imediatamente compila as questões do usuário e armazena em um servidor para posterior recuperação via browser.
Uma característica marcante nesta ferramenta é sua disponibilidade e utilização totalmente via Web. Através do endereço http://school.discovery.com/quizcenter/pode-se ter acesso ao ambiente, que é gratuito e possui validação inicial do usuário para efetuar a distinção entre professores ou alunos.

O Quiz Center é composto de várias ferramentas que são:

- **Geração de avaliações**: Utilizada para criar avaliações on-line através de um processo passo a passo, que usa as opções escolhidas pelo professor para gerar um arquivo de avaliações genérico e respostas-chave, que são armazenadas em uma sala de aula personalizada, acessível através da Web.

- **Realização dos testes em casa**: Ao invés de utilizar um período de aula para um simples teste, a ferramenta possibilita que os estudantes realizem o teste em casa ou de outros locais. As respostas dos estudantes podem ser armazenadas, organizadas e enviadas diretamente para o professor através de e-mail.

- **Correção automática das avaliações**: Após o estudante preencher o formulário de avaliação e submeter suas respostas, a ferramenta confere as respostas das questões de acordo com as respostas fornecidas pelo professor, determinando quais são corretas e calcula a pontuação total do aluno. Após este processo, é produzida uma nova página que mostra os resultados ou se o professor preferir, envia-os por e-mail.

FIGURA 3.6 - Página para criação de questões no Quiz Center – [QUI 2001].

Proteção de segurança: As avaliações criadas com o Quiz Center podem utilizar um esquema de proteção por senha que permite que o acesso dos alunos seja restrito a apenas quem o professor determinar. Podem ser configuradas senhas para uma classe inteira ou senhas individuais para cada estudante. Os únicos que podem realizar os testes são os que possuem senhas.

Gerenciamento de arquivos: Os arquivos são armazenados no servidor em uma conta individualizada para o professor, que possui o controle de todas avaliações.
Arquivos de avaliações podem ser editados após serem criados e apagados uma vez que não sejam mais necessários. Todas estas operações são realizadas diretamente via Web.

Quanto aos métodos de avaliação, a ferramenta apresenta quatro opções que determinam como as respostas serão tratadas quando forem submetidas:

- **Auto-avaliação** – As respostas são corrigidas on-line e os resultados são imediatamente mostrados para o estudante junto com as respostas corretas para aquelas questões respondidas de forma errada.

- **Nova tentativa para realizar o teste** – O mesmo que auto-avaliação, exceto porque não mostra as respostas corretas.

- **Teste por e-mail** – Simplesmente envia as respostas dos estudantes para o endereço de e-mail do professor sem verificar uma resposta-chave.

- **Correção e testes e-mail** – Uma resposta chave é gerada e a avaliação é corrigida on-line, mas os resultados são enviados por e-mail para o professor e não mostrados para o estudante.

É possível a criação de cinco tipos de questões, que devem ser selecionadas pelo professor no momento da confecção da avaliação. Os tipos existentes são:

- **Resposta-curta**: Cria a questão e um espaço em branco para resposta

- **Verdadeiro-falso**: São criados dois botões para seleção de uma das opções, “verdadeiro ou falso”.

- **Múltipla escolha**: É gerada uma questão que lista a resposta e todas suas alternativas selecionáveis. Na criação deste tipo, o professor seleciona quantas alternativas serão visualizadas pelo aluno.

- **Discursiva**: Cria a questão e uma área de texto para cada resposta.

- **Tipo mesclado**: Permite que o professor combine todos os tipos de questões em uma avaliação.

Gráficos podem ser inseridos no momento da criação das questões pelo professor e opcionalmente podem possuir associados a eles um texto descritivo. A forma de inserção dos gráficos se dá através da especificação de um endereço na Web que contenha o gráfico, que será mostrado ao lado da questão correspondente.

Links externos com descrição opcional podem ser associados a questões, de forma que possam ser apresentados materiais instrucionais, gráficos, arquivos de som ou outro tipo qualquer de conteúdo compatível com o browser do aluno.

Para questões de múltipla escolha, a ordem das respostas pode ser alternada, desde que a opção correspondente tenha sido selecionada pelo professor no momento da criação da questão.

Para questões de respostas curtas em avaliações que são corrigidas on-line, é necessário informar o quão específica o professor deseja a resposta do aluno. Existem três opções:

- **Comparação exata**: a resposta do estudante é considerada correta, somente se é idêntica à resposta especificada na resposta-chave pelo professor;

- **Comparação inexata**: A resposta do estudante está certa, se aproximadamente contém a resposta inserida na resposta-chave;
• Comparação avançada: Para aquelas questões que podem ter uma ou várias possíveis respostas ou têm mais do que uma resposta requerida;

Após os estudantes completarem a avaliação, podem ir diretamente para uma nova página Web, cujo endereço é especificado em um dos formulários de criação de questões. Além do endereço, pode existir um breve comentário do professor indicando o conteúdo da página sugerida.

![Quiz Generation Complete](http://school.discovery.com/quizzes6/arquitetura/Arquitetura.html)

This is the address your students will need to access the quiz.

Look at quiz

FIGURA 3.7 - Quadro apresentado após a criação de questões - [QUI 2001].

Após serem inseridas as informações necessárias, ocorre a criação da avaliação, que será disponibilizada em um endereço WWW apresentado ao professor (fig. 3.7) que deverá ser indicado para os alunos que forem realizar as avaliações. Se por alguma razão o professor não estiver pronto para gerar sua avaliação, pode salvar o arquivo para terminar posteriormente.

As avaliações podem ser visualizadas, editadas ou apagadas conforme a conveniência do professor. Podem ser impostas restrições de acesso para as avaliações, através do uso de uma senha no sistema para limitar o acesso ao endereço da página que contêm a avaliação. Antes de restringir um questionário, deve ser criado um grupo para os alunos pelo professor. Através deste grupo, poderão ser inseridos novos alunos e determinadas as senhas correspondentes para cada um ou uma senha para todo grupo.

<table>
<thead>
<tr>
<th>Username</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>rodrigo</td>
<td>Started quiz: Thu Apr 26 15:13:37 2001</td>
</tr>
<tr>
<td>rodrigo</td>
<td>Ended quiz: Thu Apr 26 15:14:44 2001</td>
</tr>
<tr>
<td>Rodrigo</td>
<td>Total score: 2/4 (50.00%)</td>
</tr>
</tbody>
</table>

FIGURA 3.8 - Exemplo de Log – [QUI 2001].

Uma vez que a avaliação é restrita, é necessário que os alunos possuam um login e senha individual, que devem ser informados pelo professor. Também pode ser configurada uma opção para gravar as atividades exercidas no sistema. Existem três opções para gravação de log que são: A hora que o estudante começou a avaliação, a hora que terminou e a pontuação final (figura 3.8).

3.2.2 Hot Potatoes

Foi desenvolvido no Canadá, através da linguagem Java e criado pela equipe de desenvolvimento e pesquisa da University of Victoria Humanities Computing and Media Centre.
O propósito do *Hot Potatoes* é permitir que sejam criados exercícios educativos baseados na *Web*, que podem ser entregues para qualquer computador conectado à Internet com um *browser* relativamente atualizado (versão 4.x ou superior).

O software funciona no computador cliente, portanto para sua execução é preciso que se realize um *download* da ferramenta, que está disponível em http://www.halfbakedsoftware.com.

Após a instalação da ferramenta em seu computador, o usuário pode optar pela criação de seis tipos básicos de exercícios, que depois de gerados para *Web* utilizam *HTML* e *JavaScript* para implementar sua interatividade. Existe ainda a opção de gerar páginas com *DHTML* (*Dynamic HTML*), suportado apenas em *browsers* com versões mais recentes.

É necessário que sejam inseridos os dados dos exercícios (questões, perguntas, respostas e demais opções) para que o software crie páginas *Web* que devam ser enviadas para um servidor.

O software consiste de um conjunto de seis programas para criação de exercícios educacionais interativos para *WWW*.

Existem muitas opções de personalização nos programas utilizados pelo *Hot Potatoes*. Podem ser configurados inúmeros parâmetros como títulos dos exercícios, mensagem de auxílio para os usuários que responderão às perguntas, conteúdo das mensagens que serão apresentadas após o usuário acertar ou errar uma resposta, textos indicadores para respostas certas ou erradas, conteúdo dos botões da página, *links* para questões próximas ou anteriores, configurações da aparência da página quando for apresentada para o usuário na forma de avaliação, possibilidade de mostrar questões individualmente ou várias ao mesmo tempo, temporizador e alteração na ordem de apresentação das questões randomicamente.

Além destas opções de configuração, caso o usuário conheça a linguagem *HTML* ou *JavaScript*, pode modificar a página criada, editando seu código fonte.

Para criação de exercícios é necessário que sejam realizadas quatro etapas que são idênticas para qualquer um dos seis componentes do *Hot Potatoes*:

1. *Entrada de Dados*: O usuário deve inserir as questões, respostas e *feedback* dentre outras informações específicas da questão.

2. *Ajuste de Configuração*: Entende-se por configuração um conjunto de informações usadas para compilar as páginas *Web*. Inclui instruções para os
estudantes, títulos para botões de navegação e outras informações que provavelmente não mudarão muito entre os exercícios.

3. **Criação da página Web:** Através de um botão específico, o exercício criado no computador local no formato nativo do componente que o criou é exportado para o formato *Web*.

4. **Publicação na Web:** Por fim, o último passo necessário para utilização dos exercícios é sua publicação na Internet através de *FTP* ou *software* de publicação na *Web* como o *Frontpage* por exemplo.

O *software* não apresenta controles de acesso e *feedback* para o professor na versão *freeware*. No entanto de acordo com a documentação do sistema, na versão comercializada é possível retorno das respostas dos alunos para o professor, pelo envio dos resultados por *e-mail*, sendo necessário para isso fazer a configuração de *scripts PERL*. Também é possível restringir o acesso a determinado grupo de usuários através da versão comercial.

A seguir, serão detalhados os principais componentes do *Hot Potatoes*.

3.2.2.1 **JBC**

Através do *JBC*, é possível ao professor a criação de questões de múltipla escolha para os alunos (fig. 3.10). Além do título e do enunciado da questão, devem ser estipuladas no mínimo duas respostas sendo que ao menos uma deve ser a correta. É possível a criação de questões com várias alternativas corretas, cabendo ao professor informar isto ao aluno no enunciado da questão. Após o término da questão, um retorno específico é fornecido ao estudante através da visualização da nota.

Opcionalmente, pode ser apresentado um *feedback* sob a forma de texto para o aluno quando for selecionada uma resposta.

![FIGURA 3.10 - Tela principal do JBC](image)

Após a geração da página que será apresentada para o usuário (fig. 3.11), várias opções estão disponíveis para navegação, como ir para próxima página ou questão ou voltar ao índice, além dos botões existentes no *browser*.
3.2.2.2 JQuiz

Cria questões de respostas curtas, onde o estudante digita uma palavra ou frase em resposta à questão. As frases são checadas de acordo com as respostas corretas especificadas pelo instrutor e o retorno ao aluno é através da demonstração de que partes da resposta estão corretas. O estudante também pode pedir uma pista se necessário e ver a próxima letra correta na resposta.

3.2.2.3 JCloze

Cria exercícios de completar lacunas. Um número ilimitado de respostas corretas pode ser especificado para cada lacuna e o estudante pode pedir uma pista e ver uma palavra da resposta correta. Uma “dica” específica também pode ser incluída para cada lacuna. O escore automático está também incluso. O programa permite lacuna com palavras selecionadas ou lacunas automáticas a cada n palavras no texto.
3.2.2.4 Jcross

Cria palavras cruzadas que podem ser completadas on-line. Pode ser usada uma grade virtual de qualquer tamanho. Como JQuiz e JCloze, um botão permite que o estudante peça pistas, se necessitar de ajuda.

3.2.2.5 JMix

Cria exercícios com palavras misturadas. Podem ser especificadas quantas respostas diferentes são necessárias, com base nas palavras e na frase. Um botão de “dica” mostra ao estudante a próxima palavra correta ou segmento da frase se necessário. Neste módulo é inserido o texto correto na caixa de diálogo da sentença principal e no momento do exercício, a frase é colocada fora de ordem, cabendo ao aluno selecionar a ordem correta das palavras.

3.2.2.6 JMatch

Cria exercícios que relacionam “colunas”. Uma lista de itens fixos aparece à esquerda podendo ser figuras ou textos, com itens misturados na direita. Pode ser usado para comparar um vocabulário com figuras ou traduções, ou para ordenar sentenças para formar uma sequência ou uma conversação.

3.2.3 Question Mark Perception

O Question Mark Perception é um software que é executado em ambiente local e que permite que sejam disponibilizados testes através da Web (Intranet ou Internet) para a avaliação e certificação de estudantes e colaboradores. Desde o seu lançamento em 1998, o Question Mark Perception tem sido adotado por grandes empresas e universidades em todo o mundo [MIC 2001].

Para a criação das questões e das sessões avaliativas o Perception possui dois módulos específicos, o Question Manager e o Session Manager. Através do primeiro é possível criar bancos de questões com tópicos e sub-tópicos personalizados (fig. 3.13).
O *Question Manager* possui uma ferramenta na qual usuários mais avançados podem criar um conjunto de opções de questões ou até adicionar suas próprias definições de questões e modelos. O *Question Manager* organiza suas questões em bancos de dados de questões. Estes arquivos possuem a extensão “.question”, mas são manipulados no formato “.mdb” (*Microsoft Access Database*), desta forma podem ser acessados através do *Microsoft Access* ou outros aplicativos que possuam compatibilidade com esta extensão.

A ferramenta apresenta dez tipos de questões que podem ser configuradas e personalizadas através de um editor. Existem opções para tornar aleatória a ordem das questões e de suas alternativas. Isso faz com que a mesma prova tenha diversas versões, o que significa que para cada participante será trazida uma prova diferente. Quanto maior o número de questões criadas, maior será o número de provas geradas automaticamente pelo sistema.

Para enriquecer as questões é possível a inclusão de recursos multimídia como áudio e vídeo, além de imagens e HTML. Também é possível criar modelos de fundo para cada sessão, assim como uma identidade visual específica.

Qualquer arquivo em formato ASCII (texto) que já possua questões pode ser importado para o *Perception*, como por exemplo, questões criadas através do *MS Word*.

Para cada alternativa criada para a questão é possível definir um diferente feedback (comentário, pontuação, etc). Isso significa que, dependendo da alternativa escolhida pelo participante, surgirá um feedback específico para cada questão ao final da prova.

Os dez tipos de questões configuráveis existentes na ferramenta e suas principais características são:

- **Preenchimento de lacunas**: Questões dissertativas onde o participante deve preencher lacunas presentes em textos ou frases. Possui correção e feedback automáticos.

- **Múltipla Resposta**: Apresenta várias alternativas e mais de uma resposta. É possível criar quantas alternativas forem desejadas. Também é um teste com correção e feedback automáticos.

- **Múltipla Escolha**: É o teste com várias alternativas e uma única resposta. É possível criar quantas alternativas se desejar, e também possui correção e feedback automáticos.

- **Associativa**: Nesse tipo de teste o participante deve relacionar os tópicos através de colunas. É um teste com correção e feedback automáticos, e com número ilimitado de possíveis associações.

- **Verdadeiro ou Falso**: Nesse teste é possível alterar as opções para "Correto" ou "Incorreto", "Sim" ou "Não" ou qualquer outra configuração pretendida. É um teste com correção e feedback automáticos.

- **Mapa de imagens**: Essa é uma questão interativa em que é preciso posicionar um marcador sobre uma imagem de fundo. É usado principalmente em disciplinas que utilizem muitas imagens (geografia, biologia, etc) e por empresas de tecnologia. É um teste com correção e feedback automáticos [MIC 2001].
- *Numérica:* É um teste com resposta dissertativa e obrigatoriamente numérica. É possível definir margens de acerto ou erro com notas diferentes para cada uma. É um teste com correção e feedback automáticos.

- *Dissertativa com busca por palavras-chave:* Nessa questão o participante deve preencher um breve campo de resposta. O sistema automaticamente corrige a resposta através de busca por palavras-chave pré-definidas. É portanto, uma questão com correção e feedback automáticos.

- *Explanatória:* Essa é uma questão especial que geralmente é colocada no início das avaliações. Traz informações que servirão como base para as questões seguintes. Não é corrigida e não possui feedback.

- *Pesquisa Dissertativa:* Traz um campo no qual o participante pode expressar sua opinião ou responder a uma pergunta. Não possui correção automática e a resposta é armazenada no banco de dados, para que posteriormente o instrutor ou professor possa corrigi-la.

Outro componente do *Perception* é o *Session Manager*, que fornece as ferramentas necessárias para criar avaliações on-line através da estruturação das sessões a partir de questões já criadas no *Question Manager*, que podem ser agrupadas de acordo com a conveniência do professor. Os arquivos gerados por este componente possuem a extensão “.session” e também são compatíveis com o formato “.mdb”.

O *Session Manager* possui assistentes para sua utilização, mas pelo número excessivo de opções disponíveis pode ser considerado de difícil operação por usuários leigos.

![FIGURA 3.14 - Exemplo de relatório personalizado](image)

Podem ser configurados inúmeros parâmetros, como a indicação para armazenar ou não as respostas dos alunos, apresentar as questões de forma aleatória, inserir ou remover questões criadas no *Question Manager*, configurar mensagens personalizadas em caso de erro ou acerto dos alunos, permitir a definição de senhas de acesso para questões ou sessões e criação de grupos para os quais estarão disponíveis as avaliações. Também é possível incluir links automáticos para outras sessões de acordo com o desempenho do participante no teste, ou imprimir as provas em papel para uso em avaliações tradicionais.
FIGURA 3.15 - Exemplo de relatório padronizado

Outro componente existente no Perception é o Windows Reporter Program. Este componente gera relatórios personalizados (fig. 3.14) ou padronizados (fig. 3.15), de acordo com os dados armazenados que contém os resultados das respostas dos alunos obtidos nas sessões. Existem diversos tipos de relatórios que podem ser obtidos com este componente. É possível realizar o cruzamento de tabelas para obter informações que não estejam presentes nos relatórios originais, proporcionando maior flexibilidade para o usuário.

Através do browser proprietário da ferramenta Perception (PSB) é possível criar provas de certificação, que podem ser disponibilizadas em datas e horários específicos e limite o tempo de duração das provas, para garantir a segurança de informações sobre as provas.

3.3 Ferramentas de Autoria

Além dos ambientes já existentes de EAD, que proporcionam a criação de avaliações com inúmeros benefícios, existem também ferramentas de autoria multimídia, que também implementam diversas características inerentes à avaliação e possuem, cada vez mais, recursos de disponibilização de seus aplicativos na Web. Como representante das ferramentas de autoria multimídia, foi escolhido o Asymetrix Toolbook, um popular software de criação de aplicativos multimídia que trabalha com a possibilidade de criação de diversos tipos de questões.

3.3.1 Asymetrix Toolbook

Antes de entrar no objetivo principal que é a parte avaliativa do Toolbook, são necessários alguns esclarecimentos gerais sobre esta ferramenta para melhor entendimento. Toolbook é uma ferramenta de autoria criada para implementar cursos “e-Learning” e aplicações multimídia. Através de sua utilização é possível implementar cursos sofisticados que podem ser disponibilizados de várias maneiras, sendo uma delas via Web.

Aplicativos simples podem ser criados facilmente através de objetos pré-programados existentes nos catálogos e modelos. Para necessidades especializadas o
Toolbook possui uma linguagem de programação denominada Openscript e está dividido em dois produtos comerciais, o Toolbook II Instructor e o Toolbook Assistant. Uma das finalidades destas ferramentas é, de acordo com [HOP 98] a criação de módulos instrucionais e de avaliação. A principal diferença entre elas é que seu foco principal é distinto, sendo que a primeira é voltada para o desenvolvimento de aplicativos por profissionais da área, que trabalham com programação e podem utilizar os sofisticados recursos proporcionados pelo OpenScript e a segunda é voltada para usuários finais e possui uma interface bastante amigável que elimina a necessidade de programação permitindo que usuários criem aplicações simplesmente utilizando o mouse.

O toolbook oferece um ambiente de programação orientado a objetos e dirigido a eventos; entretanto a linguagem de scripting não é orientada a objetos, pois não fornece por exemplo classes, herança ou encapsulamento [SUB 96].

Toolbook II é uma família de produtos comerciais que juntos fornecem uma arquitetura modular que permite o desenvolvimento e aplicação de avaliações, e são complementados pelo Librarian, que é um componente que acompanha o pacote e é utilizado para gerenciar e administrar um curso criado com o Toolbook no servidor [HOP 98].

Para obter melhores resultados na análise dos aspectos relativos à avaliação no Toolbook, foi realizado um estudo de caso através de diversos testes de conversão sobre um aplicativo multimídia já existente e utilizado na área médica denominado “ECG – Curso Básico” que utiliza avaliação dos alunos ao final de cada módulo do curso.

No ambiente de desenvolvimento, existem diversos tipos de objetos como botões e caixas de textos. Cada objeto pode possuir um script associado a ele, sendo que os scripts somente podem ser criados nas versões Instructor. Cada objeto também possui inúmeras propriedades que podem ser modificadas. Através de catálogos, é possível a criação de objetos com ações pré-definidas, como por exemplo um botão.

3.3.1.1 Openscript

É a linguagem de programação do ambiente Toolbook através dela, pode-se programar scripts que permitem a implementação de muitas funcionalidades adicionais ao ambiente. Esta linguagem não está disponível na versão Assistant, no entanto está presente em todas as versões Instructor. A linguagem também é de fácil utilização, pois sua sintaxe é similar à do inglês e possui uma grande quantidade de comandos. Cabe salientar que os aplicativos desenvolvidos em uma versão Instructor e que contenham scripts, quando são exportados ou abertos em uma versão Assistant, preservam os scripts originais que no entanto não podem ser acessados nesta versão, sendo somente executados.

![FIGURA 3.16 – Exemplo de script associado a um botão simples](image)
3.3.1.2 Exportação de aplicativos Toolbook para Web

A família de produtos toolbook II introduziu a possibilidade de criar páginas HTML com applets Java embutidos. Apesar da proposta de gerar aplicações independentes de plataforma, o toolbook possui completa dependência do sistema operacional Windows. Podem ser criadas páginas HTML baseadas no layout de objetos não-interativos, mas com limitações impostas pelo próprio HTML.

Existem também um conjunto de applets Java que realiza uma variedade de tarefas adicionais interativas como por exemplo, navegação e pontuação de questões presentes no aplicativo.

3.3.1.3 Neuron

Neuron é um plug-in ou controle ActiveX que trabalha com Netscape Navigator ou Microsoft Internet Explorer para permitir o acesso e execução de aplicativos Toolbook II via Internet ou qualquer rede com protocolo TCP/IP.

Neuron é na realidade, o conjunto de arquivos runtime do toolbook que normalmente são distribuídos com aplicações regulares em CD-ROM, com adicionais auxiliares que são capazes de carregar os recursos do toolbook como books, system books, recursos de mídia dentre outros, através de uma conexão Internet, ao invés de diretamente do disco rígido/CD-ROM.

Justamente porque o plug-in Neuron passa seus books, arquivos de mídia, e outros, diretamente de runtime Toolbook para o computador cliente; este tem a capacidade de programação intacta, incluindo tudo que pode ser feito normalmente em uma aplicação.

No que diz respeito à avaliação, o Toolbook possui alguns recursos pré-existentes em seu catálogo que permitem que sejam realizados testes com usuários. Além disso, podem ser adicionados recursos personalizados através do Openscript.

Afora os recursos naturais do Toolbook, também existe o Librarian, um software que gerencia a entrega e acompanha o andamento de distribuição de material de treinamento e de cursos educacionais via Internet. No entanto, o foco do librarian não é exatamente a confecção das questões como o toolbook, mas o armazenamento de respostas de testes e questões, que proporcionam a geração de vários relatórios através do próprio aplicativo.

FIGURA 3.17 - Catálogo do Toolbook II Assistant com a categoria de questões
Através do catálogo de objetos do Toolbook (fig. 3.17), é possível interagir com uma grande variedade de questões diferentes, cada uma com suas opções particulares.

Através dos recursos básicos do Toolbook, é possível que sejam definidas diversas opções, como por exemplo mostrar o escore atual, se a questão estava errada ou não, apresentar mensagens do instrutor além de outras que podem ser acrescentadas. Após a resposta do aluno, o professor pode também optar entre permitir ou não novas tentativas.

Nas propriedades do objeto “questões de múltipla escolha” (fig. 3.18), pode-se definir uma ou mais questões corretas, fornecer um feedback para o aluno através de texto ou áudio, escolher se a questão vai contar pontos para o escore final e alterar aleatoriamente a ordem de apresentação da questão, além de definir pontuação.

3.3.1.4 Estudo de caso, conversão do aplicativo: “ECG - Curso Básico”

Para melhor ilustrar os resultados, foi realizada a exportação para Web de um software multimídia da área médica denominado “ECG – Curso básico”, desenvolvido pelo Prof. Dr. Waldomiro Carlos Manfroi, com versões anteriores do Toolbook.

O aplicativo original contava com inúmeros testes ao final de cada módulo (figura 3.19), desenvolvidos com Openscript. Antes da exportação para Web, o aplicativo contava com cento e sessenta e três páginas, que ocupavam aproximadamente quarenta e cinco megabytes, sem incluir o espaço ocupado por arquivos de vídeo. O aplicativo em seu formato original também continha trezentos e cinqüenta objetos com três mil linhas de script.
Os scripts no aplicativo original, desenvolvido e executado em computadores stand-alone através do módulo runtime do Toolbook, apresentavam, principalmente, as seguintes funções no que diz respeito à avaliação:

- Computar e calcular a pontuação obtida pelo usuário nos testes realizados;
- Modificar o texto das hotwords de alternativas “a), b), c), d), e)” para “x)” quando fossem selecionadas para determinar qual opção foi escolhida pelo usuário;
- Mostrar se a alternativa escolhida pelo usuário estava correta ou não através de sinalização por determinado período de tempo colocada nos campos “correto” ou “incorreto” localizados no canto inferior direito da tela (fig. 3.19);

Foi constatado que aproximadamente 95% dos scripts contidos na aplicação de origem são relativos aos testes para usuários executados ao final de cada capítulo e o restante está dividido entre os outros itens.

Diante das constatações realizadas sobre o aplicativo, foi determinada a metodologia de trabalho para obtenção dos resultados finais. Como o aplicativo em estudo foi previamente desenvolvido com a ferramenta Toolbook versão 5.0, foi utilizada a mesma ferramenta, mas em duas versões superiores para conversão para Web.

Foi utilizada a versão 7.0 Assistant para geração dos aplicativos para Web e a versão 6.0 II Instructor para edição e análise dos scripts e demais funcionalidades do aplicativo.

Foram utilizadas estas duas ferramentas pois na versão Assistant, mesmo existindo scripts nos objetos, estes não são editáveis. Além disso, as versões Assistant limitam bastante o campo de ação do programador da aplicação, já que poucas funcionalidades avançadas estão disponíveis.

Como existia uma grande necessidade de manipulação e análise de scripts para o correto desenvolvimento do trabalho, foi necessária a utilização da versão 6.0 Instructor para realizar esta tarefa. Por outro lado, por ser mais recente, a versão 7.0 Assistant,
possui o módulo de publicação para Web mais eficiente pois além de trabalhar com o formato DHTML, seus algoritmos são mais corretos e otimizados.

3.3.1.5 Resultados da conversão

Durante a conversão para Web, muitas dificuldades foram encontradas, fazendo com que o tempo necessário para a exportação do aplicativo fosse bem superior ao sugerido pelo fabricante do software em seus informativos.

Independentemente dos problemas encontrados, após vários ajustes, foi possível a conversão do aplicativo original criado para computadores stand-alone para utilização via Web com grande parte de suas características iniciais preservadas e somando ao total 1,20 Mb, mantendo o mesmo número de páginas e com poucas diferenças nas telas originais do aplicativo e as páginas geradas para Web.

Os módulos de avaliação tiveram que ser refeitos utilizando objetos do catálogo, já que os mesmos haviam sido desenvolvidos utilizando a linguagem openscript com vários recursos personalizados que não foram satisfatoriamente exportados.

Através da análise dos testes realizados sobre o aplicativo, foi possível identificar as principais lacunas existentes neste tipo de conversão pelo toolbook. Para que a característica de avaliação presente no aplicativo original fosse preservada, foram necessárias diversas modificações, principalmente nos scripts.

Outra maneira de utilizar esta ferramenta, é criar diretamente os aplicativos, sem fazer uso de programas já existentes, evitando assim os problemas normais existentes na conversão para a Web. Para criação de software avaliativo com o Toolbook, devem ser seguidos os mesmos passos já descritos neste capítulo, no entanto é aconselhável que seja utilizada a versão Assistant que apesar de não ter grande flexibilidade, possui objetos pré-definidos para criação de avaliações, o que torna a tarefa de desenvolvimento mais rápida e confiável.
4 Ferramenta Proposta

Naturalmente, não é necessário usar equipamentos de processamento de dados para organizar, selecionar e arquivar questões. Estas tarefas são rotineiras e podem ser feitas à mão [BLO 83]. Entretanto, há um ponto – que deve ser determinado em cada situação – em que a economia de tempo e o aumento no nível de exatidão no arquivamento e na manutenção da ordem tornam o uso de computadores um instrumento auxiliar precioso a um sistema de avaliação.

Seu uso elimina a dificuldade ou o desconforto que muitos professores sentem quando solicitados a realizar a análise estatística dos testes. A máquina altera o papel do professor, que passa de produtor a consumidor de dados de análise de testes e de itens [BLO 83].

O *AvalWeb* é um sistema que possui como foco principal o gerenciamento de questões e aplicação de avaliações via *Web* com base em requisições de professores. Também possui um módulo de auto-avaliação, com retorno imediato para o aluno, que integra o sistema de gerência de questões dando ênfase mais no processo de ensino/aprendizagem do que na avaliação propriamente dita.

O ensino resultante de autênticas tarefas em um ambiente aberto não é fácil de avaliar com testes tradicionais ou instrumentos existentes, portanto uma das preocupações do *AvalWeb* é fornecer subsídios para ajudar o processo de avaliação através de dados estatísticos [SAF 2000].

A avaliação inclui uma grande variedade de dados, superior ao rotineiro exame escrito final [HAY 97]. Por este motivo, o *AvalWeb* também procura colher diversas informações adicionais que colaboram para este propósito como, por exemplo, o tempo gasto pelo aluno para responder uma ou um conjunto de questões.

O modelo proposto é baseado em uma ferramenta e não possui nenhum tipo de característica que irá assegurar automaticamente a qualidade dos cursos que serão oferecidos através de sua utilização.

Existem diversas ferramentas e serviços disponíveis para finalidades correlatas mais abrangentes e que podem ser agregados, complementados e adaptados ao cenário obtido como resultado deste trabalho de pesquisa.

4.1 Arquitetura

A arquitetura proposta para o *AvalWeb* é mostrada graficamente na figura 4.1. O acesso para alunos e professores ocorre através de requisições *http* para o servidor, que interage com o código *PHP*, que por sua vez faz o acesso aos dados armazenados no banco de dados *Mysql*.

O modelo proposto está baseado na arquitetura do tipo cliente-servidor, onde o servidor *Web* representa a figura do banco de questões e alunos e professores são representados através de clientes utilizando seus navegadores.

O código *PHP* está mesclado com códigos HTML, no entanto, o conteúdo em PHP não é visível ao usuário, sendo processado no servidor.
O acesso à ferramenta é realizado via Web e as informações relativas aos alunos, professores e demais tabelas do sistema são armazenadas no servidor.

4.2 Público envolvido

Existem três cenários distintos para instrução baseada na Web, ou seja, (i) cursos que são centrados em sala de aula e utilizam a Web como uma forma alternativa de apresentação da informação veiculada em sala de aula; (ii) aprendizado dirigido para sala de aula e suplementado por atividades na Web; e (iii) cursos que utilizam recursos da Web como mecanismo completo para apresentação de conteúdo [MEN 97]. O AvalWeb pode ser aplicado aos dois últimos cenários sugeridos anteriormente, podendo ser utilizado como ferramenta de apoio para professores do ensino tradicional ou como complemento a cursos fornecidos totalmente via Web.

No caso de uso como complemento ao ensino em salas de aula tradicionais, o AvalWeb também é adequado, pois apenas é necessário que o professor e os alunos tenham acesso à Internet. Como ocorre na maioria dos casos, ainda não é muito difundida a utilização de recursos da Web no ensino presencial, o que não pode ser condenado visto que fornecer cursos à distância não é um consenso entre educadores, além do que sua aplicação via Internet pode ser considerada recente.

Somando-se a isto, se consideradas todas as instituições de ensino, são poucas as iniciativas de desenvolvimento de cursos nestes moldes, além disso, também são poucos os professores que têm conhecimentos suficientes para criar e publicar material para ensino de seus alunos na Web, tanto através de ferramentas simples como por exemplo Microsoft Frontpage quanto utilizando ambientes completos para ensino à distância como TopClass, Aulanet, WebCT, etc.

Desta forma, não é necessário que a instituição de ensino à qual pertence o professor tenha adquirido um ambiente completo para desenvolvimento de cursos de educação à distância, o que normalmente implica um grande investimento e está fora da realidade de muitas instituições.

Para utilização do AvalWeb, seus usuários, alunos e professores, não necessitam de profundos conhecimentos em informática, devendo apenas saber utilizar genericamente a Internet. Por este motivo, acredita-se que exista uma boa possibilidade de aplicação da ferramenta no ambiente de ensino convencional.
Outra característica do AvalWeb, ao contrário da maioria das ferramentas analisadas neste trabalho, com exceção do Quiz Center, é que não é necessário que o professor possua um computador, pois o acesso pode ser realizado de qualquer local que tenha um computador conectado à Internet, como na escola, por exemplo, o que se torna possível porque o sistema armazena as informações de forma centralizada em um servidor na Web, dispensando o uso de dispositivos de armazenamento local para os usuários.

O público envolvido na utilização do AvalWeb é composto basicamente por dois tipos de usuário:

- Professor – É o responsável pela disciplina da qual estarão disponíveis questões para avaliar os alunos. Este tipo de usuário tem acesso irrestrito a opções como cadastramento de disciplinas, tópicos, questões e criação de avaliações.

- Aluno - Fará parte apenas de avaliações propostas, não sendo possível seu acesso ao sistema, sem o conhecimento da senha fornecida a ele pelo professor. O aluno tem acesso a determinados tipos de informações relativas às suas avaliações anteriores e em alguns casos também a auto-avaliações.

O modelo proposto dispensa a necessidade de um administrador. Tarefas que necessitariam de sua presença, como a liberação de acesso aos alunos, são realizadas automaticamente, através da interação entre o professor e a ferramenta.

O AvalWeb pode ser utilizado por qualquer instituição, empresa ou profissional, que tenha como uma de suas necessidades avaliar pessoas.

4.3 Descrição

O AvalWeb é baseado em avaliações e questões. Uma avaliação consiste em um conjunto limitado de questões, de um mesmo tipo ou de tipos diferentes, podendo cada uma delas, possuir ou não um valor determinado, além de poder ou não exibir sua correção ao aluno, o que diferencia a avaliação da auto-avaliação.

As questões são inseridas no sistema pelo professor. O processo de criação de avaliações para serem disponibilizados na Web é facilitado porque sua geração é automática, de acordo com os níveis de dificuldade e parâmetros estipulados pelo docente no momento de sua criação.

É interessante salientar que o banco de dados fica armazenado na Web, proporcionando fácil acesso aos alunos e professores pois a informação é centralizada.

Para futura referência, o aluno possui acesso às questões respondidas em avaliações anteriores. As respostas dos estudantes, bem como suas dificuldades na maioria do tempo, podem ser facilmente revisadas com este recurso [SEA 2000].

Além de possuir como objetivo a obtenção do grau de conhecimento do aluno, o AvalWeb fornece subsídios para auxiliar a melhoria do processo de ensino, através de diversas informações, como por exemplo, a lista dos tópicos nos quais estão sendo enfrentadas maiores dificuldades pelos alunos.

O AvalWeb utiliza recursos que tentam aproximar a avaliação o máximo possível da realidade, como uma área reservada para que alunos anotem tópicos a seu critério. Esta área denominada de “bloco de rascunhos”, está presente porque os alunos estão acostumados a rabiscar nas provas, ou em papéis de rascunho [BLA 99].
O professor pode fazer comentários sobre as questões respondidas pelos estudantes; criar algumas questões que não possuam nota associada a elas; importar e exportar a lista de notas do ambiente para seus computadores e excluir contas de alunos quando houver necessidade [CHE 98];

Recibos com mensagens de confirmação são mostrados na tela do computador para o estudante ao final da avaliação, procurando aumentar a confiabilidade no sistema.

Segundo [CHE 98], no relatório da avaliação, o endereço IP do local onde o estudante está respondendo o teste deve ser listado. Se a avaliação está supostamente sendo realizada em um computador do laboratório, qualquer endereço IP diferente dos endereços do laboratório pode ser identificado.

Esta informação não é totalmente eficiente em alguns casos como, por exemplo, o acesso de casa por parte dos estudantes, porque o endereço IP que o navegador reconhece pode não pertencer à máquina em que o usuário está navegando [CON 2001].

Isto porque alguns provedores empregam servidores proxy, que agem como intermediários. O navegador do usuário na realidade solicita um URL do servidor de proxy que por sua vez solicita a página de seu servidor e então encaminha essa página para o usuário. O resultado é que muitos usuários diferentes do mesmo provedor podem estar navegando no site simultaneamente, todos aparentemente do mesmo endereço.

O AvalWeb permite o reuso de avaliações, de forma que o professor pode selecionar uma questão já inserida no sistema modificando apenas algumas partes e tornando o processo de criação de questões mais rápido.

O grau de satisfação que os alunos obtiveram com o curso, treinamento ou com a própria avaliação é pesquisado através de questionários. Para tanto, o AvalWeb apresenta alguns modelos de formulários que buscam dados sobre pontos específicos como, por exemplo, o conteúdo do curso, material, métodos utilizados pelo professor e o sistema de avaliação.

Opcionalmente, podem ser definidos formulários personalizados, que busquem obter o nível de satisfação de outros tópicos quaisquer. Os formulários para avaliação são submetidos aos alunos automaticamente, após a realização de alguma avaliação e são escolhidos pelo professor quando são geradas as avaliações [SIE 2001].

Os alunos podem ser observados através de pesquisas ou, em implementações futuras, através da análise dos dados existentes na tabela Log (fig. 4.18), que armazena todas as ações dos alunos com o objetivo gerar subsídios para que seu comportamento durante a interação com o sistema possa ser verificado a qualquer momento [HAC 2000], [MEN 97] e [ROD 2000].

Através destas informações pode ser extraído o perfil de alunos, de forma que possa, no futuro, ser aproveitado para novas versões do AvalWeb, incorporando recursos como provas adaptativas de acordo com o perfil do estudante e fornecendo maneiras alternativas de realizar a avaliação.

4.4 Modelo Conceitual

Para melhor entendimento do AvalWeb e para fornecer documentação para futuras implementações ou atualizações no protótipo, foi criado um modelo conceitual, de forma que sejam satisfeitos os requisitos propostos, proporcionando portabilidade
para qualquer ambiente, uma vez que o modelo desenvolvido é independente de linguagem de programação.

Uma das técnicas que foram utilizadas para apresentar os processos do sistema são os diagramas de fluxos de dados (DFD), que são utilizados como o primeiro passo em um projeto estruturado e apresentam o fluxo de dados global em um sistema ou programa.

Outras técnicas utilizadas são: esquemas representativos, diagramas entidade-relacionamento e dicionários de dados, juntamente com textos explicativos.

Como complemento ao modelo conceitual, foi desenvolvido um protótipo detalhado no capítulo 5, com a implementação de algumas das características previstas na modelagem, cujo objetivo é demonstrar a viabilidade das idéias apresentadas.

4.5 Acesso ao sistema

Inicialmente, ao fazer seu acesso ao sistema, o aluno é informado de que suas ações estarão sendo gravadas, pois é essencial que o aluno tenha ciência de que seus “passos” estão sendo armazenados em um arquivo de log, que no caso do AvalWeb é a tabela Log (fig. 4.18) [RIT 2000].

O ambiente adquire maior credibilidade quando esclarece todas suas regras de funcionamento desde o início e os alunos, de uma forma geral, levam mais a sério suas atividades acadêmicas quando sabem que estão sendo monitorados de alguma forma.

Exemplos tais como as estatísticas realizadas sobre os nodos do material didático percorridos e a sequência de nodos (links) visitados (encaminhamento/ navegação efetiva) [SOA 92], o tempo de permanência em cada nodo e os nodos não visitados, referentes ao assunto avaliado, podem fazer parte da avaliação como um todo.

Como todas as ações efetuadas por alunos e professores são gravadas no banco de dados, torna-se fácil a criação das mais diferentes estatísticas, proporcionadas por este tipo de controle.

![Figura 4.2 - Exemplo de tela para cadastramento do professor](image_url)
Para a utilização do sistema é necessário um cadastro prévio, realizado através de formulários, que irão registrar professores e alunos em tabelas distintas.

Os dados pessoais dos usuários são cadastrados, assim como o dia e a hora em que foi efetuado o cadastro juntamente com outras informações de navegação que são armazenadas na tabela Log.

Existem dois tipos de usuários, os alunos e professores. Para realizar o cadastro no sistema, no caso de professores, deve ser escolhida a opção “Novo professor”, que depois de selecionada exibe uma tela que solicita seus dados, juntamente com os dados da Instituição, disciplina e turma (fig. 4.2).

O login e a senha do professor são cadastrados a seu critério. O outro tipo de usuário é o aluno, que realiza seu cadastro na opção “Novo aluno”, insere seus dados pessoais e a turma da qual quer fazer parte e aguarda um e-mail de resposta com a sua senha para acesso ao sistema.

Automaticamente após preencher seu cadastro, o sistema envia um e-mail para o professor contendo os dados principais do aluno inclusive com a senha aleatoriamente gerada pelo sistema, armazenada juntamente com os dados pessoais do estudante.

Caso o professor aceite a inscrição do aluno para aquela disciplina, simplesmente escolhe a opção reply de seu software de correio eletrônico, fazendo com que os dados sejam enviados para o aluno juntamente com a senha de acesso.

Isto elimina a necessidade de que o professor ou intermediários tenham que realizar a matrícula dos alunos, ao contrário de diversos tipos de ambientes como, por exemplo, o Quiz Center, onde se faz necessário que os alunos sejam cadastrados individualmente, juntamente com suas senhas.

Para fornecer segurança adicional e facilitar o acesso ao sistema, em seu primeiro login após receber a senha, o aluno deverá modificá-la, evitando desta forma que o professor a conheça.
A restrição de acesso ao sistema ocorre por diversos fatores, sendo um deles porque as medidas de controle de uso são fundamentais para a proposição de um modelo de avaliação da aprendizagem [RIT 2000].

Na figura 4.4, é apresentado o esquema representativo de acesso ao sistema, que varia de acordo com o tipo de usuário. Professores e alunos passam pelo processo de login, tendo acesso aos respectivos módulos de acordo com seu tipo.

No caso do professor, além do acesso a diversos cadastros como o de disciplinas, tópicos, instituição, alunos, dados pessoais e turmas, também é possível criar questões, gerar avaliações e visualizar relatórios.

Para o aluno, é possível a alteração de dados pessoais, realização de avaliações ou auto-avaliações e consulta das notas e questões respondidas por ele em avaliações anteriores.

Para que as avaliações possam ser disponibilizadas pelos professores e posteriormente respondidas pelos alunos, é necessário que antes seja efetuado o cadastramento dos dados requeridos.

São disponibilizados diversos tipos de cadastros, sendo que alguns são apresentados no primeiro acesso ao sistema, quando são solicitadas diversas informações com o intuito de promover a integridade dos dados e facilitar as futuras interações com a ferramenta.

No momento de seu cadastramento no AvalWeb, além dos dados pessoais, o professor é obrigado a informar dados relativos à instituição, disciplina e turma, evitando que estes dados essenciais para utilização do sistema tenham que ser inseridos posteriormente, o que poderia dificultar a interação, já que inicialmente vários professores poderiam não saber a sequência adequada de cadastramento.
O aluno, por sua vez, deve selecionar sua turma, para que possa ser enviado o e-mail ao professor pelo sistema solicitando seu cadastro a fim de poder participar das avaliações. Um demonstrativo das etapas que devem ser seguidas para correta utilização do sistema é apresentado na tabela 4.1.

<table>
<thead>
<tr>
<th>TABELA 4.1 - Demonstrativo da seqüência de acesso ao sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFESSOR</td>
</tr>
<tr>
<td>1ª Acesso ao Sistema</td>
</tr>
<tr>
<td>Cadastra Dados pessoais</td>
</tr>
<tr>
<td>Cadastra ou Seleciona uma Instituição já existente</td>
</tr>
<tr>
<td>Cria Disciplina</td>
</tr>
<tr>
<td>Cria Turma</td>
</tr>
<tr>
<td>Cria Questões</td>
</tr>
<tr>
<td>Informa Turma e URL para alunos</td>
</tr>
<tr>
<td>ALUNO</td>
</tr>
<tr>
<td>NESTA ETAPA NÃO EXISTEM CONDIÇÕES PARA O ALUNO TER ACESSO AO SISTEMA.</td>
</tr>
<tr>
<td>1ª Acesso ao Sistema</td>
</tr>
<tr>
<td>Cadastra Dados Pessoais</td>
</tr>
<tr>
<td>Escolhe Turma</td>
</tr>
<tr>
<td>Realiza Avaliação</td>
</tr>
<tr>
<td>ETAPAS DE ACESSO</td>
</tr>
<tr>
<td>Opções disponíveis para os usuários após todos os dados anteriores cadastrados</td>
</tr>
<tr>
<td>- Incluir, alterar e excluir : Disciplinas, tópicos e questões;</td>
</tr>
<tr>
<td>- Alterar dados pessoais;</td>
</tr>
<tr>
<td>- Gerar Avaliações;</td>
</tr>
<tr>
<td>- Emitir relatórios de estatísticas, por questão, por aluno ou por avaliação;</td>
</tr>
<tr>
<td>- Fazer avaliações de sua turma;</td>
</tr>
<tr>
<td>- Fazer avaliações da área pública;</td>
</tr>
<tr>
<td>- Alterar dados pessoais;</td>
</tr>
<tr>
<td>- Matricular-se em novas turmas;</td>
</tr>
<tr>
<td>- Ver informações sobre avaliações já realizadas;</td>
</tr>
</tbody>
</table>

4.6 Auto-avaliação

O objetivo deste tipo de avaliação é melhorar o aprendizado do aluno, frequentemente através da identificação de pontos fracos em seu conhecimento e entendimento de determinada área, ajudando-o a identificar e corrigir concepções erradas.

Segundo [ALB 95], "Um aspecto fundamental para que a avaliação cumpra sua função energizante é que o aluno conheça os resultados de sua aprendizagem, isto é, que logo após o término de uma prova saiba quais foram seus acertos e erros. Quanto mais imediato for esse conhecimento, mais o incentivará a estudar, a corrigir as falhas e a continuar progredindo''.

Os especialistas concordam que "quando os alunos podem examinar suas provas e verificar o que e porque erraram, parece correto supor que muitos, se não todos, não tornarão a cometer os mesmos erros". Portanto, após uma avaliação, quanto antes o aluno conhecer seus acertos e erros, mais facilmente ele tende a reforçar as respostas certas, sanar as deficiências e corrigir os erros [ALB 95].

No módulo de auto-avaliação do AvalWeb, os estudantes não são classificados pelo professor, pois seu objetivo é dar um feedback somente para os alunos. Ele foi
construído de modo que as interpretações dos resultados dirijam a atenção do estudante para providências que ele possa tomar para superar as deficiências [BLO 83].

Uma simples comunicação de que obteve uma nota “C”, por exemplo, apenas lhe diz que de uma maneira ou de outra, que ele não foi tão bom quanto os outros. É fornecida muito pouca informação a partir da qual possa tomar alguma iniciativa. O mesmo pode ser dito sobre o relatório de um exame final apresentado sob a forma numérica.

Uma nota 76, quer se refira ao percentual de itens, escore percentual ou a uma contagem real de respostas certas ou erradas, fornece ao aluno muito pouca orientação que lhe permita corrigir seu comportamento. Sendo assim, de nada adianta os resultados serem apresentados numericamente.

No AvalWeb, a falta de informação para o aluno tende a ser minimizada, pois mesmo em caso de resultado negativo é permitido seu acesso à explicação sobre como responder corretamente, o que pode influenciar positivamente no seu aprendizado. Dessa forma, a auto-avaliação contribui para a fixação da aprendizagem e constitui um incentivo para o aluno aprender e não apenas para se preocupar com a nota como normalmente ocorre em avaliações convencionais.

Isto é possível, porque no cadastramento de questões, pode ser preenchido um campo pelo professor, com o objetivo de fornecer feedback ao aluno explicando o procedimento ou a resposta correta da questão.

Desta forma, ao invés de ser apresentada somente uma mensagem padrão informando que o aluno errou a resposta e informando sua nota ao final, é apresentada a solução para o problema, de maneira que possa ser realizada a verificação do motivo pelo qual a questão estava errada e podendo contribuir para que exista melhora no processo de aprendizagem do aluno.

4.7 Avaliação

Tem por objetivo principal atribuir determinada nota ao estudante. Por outro lado, tem o papel de ajudar o professor a melhorar seu ensino fazendo uso dos resultados obtidos, identificando as áreas nas quais os estudantes têm dificuldades de entendimento.

Desta forma, a avaliação cumpre seu papel no processo de ensino-aprendizagem e estabelece novos caminhos. Assim, a própria avaliação torna-se mais um momento de aprendizagem. O caminho do professor que avalia é o de reavaliar a aplicabilidade de seu método, de suas avaliações e de sua postura.

No AvalWeb, as avaliações podem ser disponibilizadas para os alunos de determinada disciplina ou sem restrição de acesso, na chamada área de avaliações públicas, que permite a qualquer aluno realizar a avaliação.

Para realizar estas avaliações, o estudante deverá acessar o módulo de “avaliações públicas”, onde são apresentadas avaliações de diversos temas, dependendo de sua disponibilização pelos professores. Para o aluno ser avaliado pelo sistema, ele deve fazer a solicitação para participar da turma através do preenchimento de seu cadastro.

Para que as avaliações sejam disponibilizadas aos estudantes e suas respostas sejam computadas pelo AvalWeb, é necessário que o professor gere as avaliações
através do respectivo módulo, onde são determinados os inúmeros parâmetros necessários para aplicação de qualquer tipo de avaliação.

4.7.1 Módulo para geração de avaliações

Existem diversas opções que devem ser informadas pelo professor antes que seja realizada a geração automática de avaliações. Todas as opções possuem valores-padrão, ou seja, caso não forem informadas, as avaliações serão geradas mesmo assim.

Pode ser enviado um arquivo na resposta da questão, como por exemplo em um curso de coreldraw, onde o aluno tem que mandar a imagem já no formato “.cdr” e geração de questões diferenciadas para os alunos, evitando que dois alunos possuam a mesma avaliação;

O número de questões geradas em uma avaliação pode ser fixo ou variável. No caso de avaliações com número fixo de questões, são geradas por padrão dez questões e em avaliações com número variável de questões, a quantidade deve ser definida pelo professor ao gerar a avaliação.

O AvalWeb possibilita que as questões geradas sejam mescladas, podendo o professor definir quantas questões de determinado tipo gostaria que fizessem parte da avaliação; por exemplo, 2 questões de múltipla escolha, 3 de verdadeiro/falso e o restante aleatoriamente.

Opcionalmente, pode ser definido pelo professor um tempo total para que o aluno realize a avaliação. Ainda no que diz respeito ao tempo de avaliação, é possível a inserção de um temporizador na janela principal, o que pode acarretar um efeito positivo porque os alunos ficam cientes de quanto tempo falta para o término da avaliação, mas também pode ter um efeito negativo, pois em muitos casos o aluno pode ficar nervoso, desviando sua atenção do objetivo principal que é a avaliação.

Os resultados de determinada avaliação podem ser empregados para diferentes fins, e não apenas para um só [BLO 83]. Em todos estes casos, se o objetivo ou objetivos pretendidos são definidos claramente antes de sua construção, os resultados podem ser utilizados de maneira mais satisfatória.

Desta forma é facultado ao professor, no momento da geração das avaliações, que informe os objetivos que a avaliação visa atingir. Caso existam, estes objetivos serão apresentados ao aluno no momento em que ele realizar a avaliação.

Cabe ressaltar que a avaliação deve ser realizada em função de objetivos delineados pelo professor, não cabendo à ferramenta gerenciar esta etapa.

4.7.1.1 Parâmetros gerais

Os primeiros parâmetros solicitados ao professor no momento da geração de avaliações dizem respeito a aspectos que definem a forma geral que terá a avaliação que será disponibilizada aos alunos.
FIGURA 4.5 - Parâmetros gerais das avaliações

Pode ser escolhido o tipo de avaliação desejada, podendo ser:

- **Normal** – Avaliação comum;
- **Auto-avaliação** – Possui o mesmo conteúdo de uma avaliação comum; no entanto não se preocupa com aspectos como o tempo para resposta das questões, além de apresentar a cada resposta errada do aluno, uma explicação detalhada do professor sobre a resposta correta; neste tipo de avaliação, a nota do aluno não é armazenada no sistema e também não é apresentada para o professor.
- **Distribuição** – Este parâmetro diz respeito à forma em que serão entregues as avaliações para os alunos. Caso seja escolhido o tipo de distribuição de provas iguais, todos os alunos receberão a mesma avaliação. Se for escolhida a entrega de avaliações diferentes, na medida do possível, os alunos receberão provas com o conteúdo e a ordem das questões diferentes de seus colegas, respeitando os demais parâmetros como o nível de dificuldade das questões;
- **Disponível** – A avaliação pode estar disponível somente para os alunos matriculados em determinada disciplina, ou ainda pode ser colocada em área pública, permitindo acesso a todos os alunos cadastrados no sistema, independentemente de estarem ou não matriculados na disciplina do professor que criou a avaliação;
- **Questões por Avaliação** – Permite ao professor definir o número de questões que serão submetidas aos alunos por avaliação;
- **Questionário Final** - Esta opção permite que o professor, opcionalmente, escolha algum dos tipos de questionários já presentes no AvalWeb. Os questionários têm por objetivo pesquisar informações gerais dos alunos e são apresentados sempre ao final da avaliação para cada aluno. Além dos questionários já presentes no sistema, é possível ao professor criar seu próprio questionário, sobre sua aula por exemplo, de maneira simples através de linguagem HTML ou qualquer software que permita a criação de páginas Web.

4.7.1.2 Nível de Dificuldade

Ao cadastrar questões no sistema, o professor deve informar juntamente com outros dados, seu nível de dificuldade estimado. Cada questão pode ter um nível de dificuldade que pode ser do tipo (i) Muito fácil, (ii) Fácil, (iii) Média, (iv) Difícil ou (v) Muito difícil.

Para geração de avaliações, a definição dos níveis de dificuldade das questões é um dos parâmetros que possuem preenchimento obrigatório, conforme mostra a figura 4.6. Devem ser definidos percentuais de acordo com o nível de dificuldade desejado pelo professor.
O professor poderia escolher para gerar a avaliação, por exemplo, 40% de questões Fáceis, 30% de dificuldade Média e 30% de Difíceis, sendo três questões do tipo Múltipla escolha e duas de Completar. O AvalWeb utiliza como base os parâmetros do nível de dificuldade fornecidos e realiza uma busca nos dados existentes, para selecionar questões que atendam aos requisitos especificados.

Além do nível de dificuldade indicado pelo professor, o sistema calcula seu próprio nível de dificuldade das questões, tendo como base o número de acertos ou erros das mesmas.

Grandes desníveis entre o nível informado pelo professor daquele informado pelo sistema podem servir para detectar vários tipos de problemas. Pode ser que o professor tenha indicado um nível realmente não muito apropriado ou determinados tópicos que o professor esperava que estivessem bem absorvidos pelos alunos não estavam.

O sistema apenas sugere para o professor este nível de dificuldade, não alterando o banco de dados com as questões já cadastradas, cabendo ao professor sua análise, pois podem existir em alguns casos fatores adicionais, como por exemplo turmas que apresentam baixo ou alto rendimento se comparadas com outras.

Para realizar o cálculo do nível de dificuldade, o sistema utiliza a fórmula apresentada na figura 4.6. Um exemplo de sua aplicação pode ser verificado na figura 4.7, onde é calculado um nível fictício com base nas respostas dos alunos.

Este recurso fornece um feedback contínuo para o instrutor e permite avaliar sua percepção para definição inicial dos níveis de dificuldade das questões.
Para o sistema determinar este nível são realizados cálculos de acordo com a fórmula apresentada na figura 4.8, que leva em conta o número de questões existentes e que possuem os níveis de dificuldade correspondentes aos estipulados através dos percentuais apresentados no exemplo da figura 4.6.

Supondo que o professor estipule que deseja a avaliação com dez questões, sendo composta de cinqüenta por cento de questões fáceis, trinta por cento de médias e vinte por cento de questões difíceis, para realização do cálculo de quantas questões de cada nível de dificuldade devem ser apresentadas, o sistema realiza o cálculo conforme a fórmula apresentada na figura 4.9.

Em alguns casos podem ocorrer erros na definição do número de questões de determinado nível de dificuldade a serem apresentadas. Por exemplo, caso o professor defina o percentual de 30% de questões fáceis em um total de dez questões da avaliação e existam somente duas questões fáceis cadastradas no banco de dados. Neste caso, o AvalWeb informa o problema ao professor, que pode modificar o percentual definido anteriormente.

Outro problema que pode ocorrer, é em casos aonde sejam definidos, por exemplo, percentuais como 25% em um total de dez questões. Como o sistema não pode gerar 2,5 questões, é apresentada uma mensagem ao professor sugerindo o arredondamento do índice.

Depois de realizados os cálculos correspondentes, são definidas quantas questões de cada nível de dificuldade devem ser apresentadas aos alunos no momento da realização da avaliação. Na figura 4.10 é apresentado um exemplo do cálculo realizado pelo sistema para determinar o número de questões por nível de dificuldade a serem geradas na avaliação.

Exemplo

<table>
<thead>
<tr>
<th>Exemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avaliação gerada com 10 questões sendo:</td>
</tr>
<tr>
<td>50% fáceis - 30% médias - 20% difíceis</td>
</tr>
</tbody>
</table>

| No. de Questões Fáceis = (50 / 100) * 10 = 5 questões Fáceis |

FIGURA 4.8 - Exemplo do cálculo do nível de dificuldade do sistema

FIGURA 4.9 - Fórmula para calcular a quantidade de questões

FIGURA 4.10 - Exemplo de cálculo de questões fáceis apresentadas
4.7.1.3 Tipos de questões

Existem sete tipos de questões que podem ser inseridas nas avaliações. Todas elas comportam características comuns, como o nível de dificuldade, tópico associado, enunciado e pontuação padrão.

Cada questão pode ter associada a ela uma imagem (extensão .gif ou .jpg) que é mostrada juntamente com o enunciado no momento da apresentação da avaliação para o aluno. Este recurso pode ser útil para questões que necessitem apresentar determinadas imagens para facilitar o entendimento por parte do aluno. Por exemplo, em uma avaliação de um curso de fruticultura, onde deve ser identificada se maneira de plantar uma semente está correta. Cabe ao aluno responder se o procedimento é ou não correto, com base na imagem apresentada.

Como pode ser observado no diagrama E-R (fig. 4.18), todos os tipos de questões são uma especialização da tabela “questão”, que armazena os principais dados comuns a todos os tipos de questões, como por exemplo, enunciado, nível de dificuldade, tópico, disciplina, imagem, pontuação e tempo de resolução.

Por padrão do AvalWeb, as questões de múltipla escolha, preencher lacunas e verdadeiro ou falso possuem correção automática.

No momento da criação das questões, são fornecidas “dicas” para sua construção. Estas sugestões são apresentadas de acordo com o tipo de questão que o professor está criando e servem apenas como referência, não sendo obrigatória sua utilização.

Múltipla Escolha

Corrigir um teste de múltipla escolha à mão é, no mínimo, uma tarefa demorada, tediosa e aborrecida [BLO 83]. Embora em alguns sistemas o trabalho de profissionais possa liberar os professores desta função, o atraso entre a aplicação do teste e a apresentação dos resultados é diretamente proporcional ao número de questões e de testes.

Além disso, a correção manual não fornece dados referentes à análise dos itens e do teste. Não há dúvida de que as máquinas podem corrigir testes de múltipla escolha mais longos, aplicados em turmas de tamanho regular, de forma mais rápida e exata do que é possível manualmente.

No protótipo desenvolvido, existem apenas questões de múltipla escolha. Este tipo de questão pode possuir um número ilimitado de alternativas, sendo que o número mínimo é de duas alternativas. Apenas uma alternativa é correta, marcada pelo professor no momento da criação.

Este tipo de questão possui a possibilidade de alterar a ordem de apresentação das opções de forma aleatória, definido no momento da geração da avaliação.

Exemplo de uma questão de múltipla escolha:

Quem é o Tetracampeão da Copa do Brasil de 2001:

() Internacional;
() São Paulo;
() Grêmio;
Preferencialmente, devem ser apresentadas todas as alternativas como plausíveis de serem a resposta; evitar a inclusão de palavras ou expressões que sugiram declarações falsas ou verdadeiras, tais como: nunca, nenhum, somente, etc.; não usar a alternativa “todas as respostas acima” ou “nenhuma das respostas”; evitar fornecer indícios de respostas como a colocação de artigos e usar, de preferência, frases positivas, mas, se for necessário usar a negativa, esta deve ser destacada [BER 97].

Completar Lacunas

Permite que o professor crie um texto e assinale no mínimo uma e no máximo 3 palavras a serem omitidas no momento da apresentação da questão para o aluno, conforme exemplo abaixo. É facultado que sejam inseridos sinônimos, que também poderiam ser respostas corretas para as questões.

Exemplo de questão do tipo completar lacunas:

a - O estado de Santa Catarina faz parte da região

b - é a capital do RS.

São sugeridas algumas regras no momento da criação de questões deste tipo, como: evitar fornecer pistas para as respostas com a colocação de artigos antes da lacuna; colocar em cada frase no máximo três lacunas para não prejudicar a clareza do exercício; fazer constar das lacunas apenas os elementos relevantes da sentença; elaborar as sentenças de forma clara, objetiva e precisa, sem informações desnecessárias e reformular as frases do material de estudo ao elaborar a questão [BER 97].

Dissertativa

Consistem de questões dissertativas que não podem sofrer correção automática; no entanto as questões deste tipo são enviadas por e-mail para o professor para que possa ser realizada a correção.

Verdadeiro / Falso

Fornecem apenas duas alternativas de resposta: verdadeiro ou falso, sendo apenas uma a correta, conforme o exemplo:

Leia cada uma das frases abaixo. Selecione V ou F para afirmativas verdadeiras ou falsas respectivamente.

A – O processo de conversão de linguagem de alto nível para linguagem de máquina é chamado de interpretação. ().

Preferencialmente devem ser seguidas algumas regras no momento da criação da questão, como: elaborar frases curtas; usar preferencialmente frases positivas; destacar a negação quando tiver de ser usada; evitar a inclusão de palavras ou expressões que sugiram declarações falsas ou verdadeiras, tais como nunca, nenhum, somente; construir frases a partir de elementos importantes do conteúdo; evitar frases parcialmente certas ou parcialmente erradas; apresentar frases verdadeiras ou falsas misturadas, sem nenhum critério predeterminado [ROD 2000].
Ordenação

É informada uma lista de itens pelo professor, que deve assinalar qual a ordem correta para resposta dos alunos, conforme exemplo abaixo. A ordem pode ser normal ou inversa.

Numere os fatos de 1 a 3, considerando sua sequência cronológica:

a) () Descobrimento do Brasil
b) () Proclamação da República
c) () Tratado de Tordesilhas

O ideal para este tipo de questão é apresentar no mínimo 3 elementos para serem ordenados; evitar fornecer indícios de resposta; deixar bem claros o critério e o ponto de partida da ordenação desejada e não incluir recomendações desnecessárias [ROD 2000].

Relacionar

São apresentadas duas colunas, sendo que o aluno deverá assinalar qual resposta da segunda coluna corresponde à da primeira, conforme o exemplo:

Numere a segunda coluna de acordo com a primeira, associando cada estado à sua capital:

(1) RS () Florianópolis
(2) SC () São Paulo
(3) SP () Porto Alegre

Para este tipo de questão o professor deve tentar criar instruções completas explicando a forma de associação; elaborar, sempre que possível, frases positivas; evitar construções gramaticais indicativas da alternativa correta; manter a homogeneização quanto ao conteúdo e a forma gramatical; não construir alternativas que englobem outras e não incluir mais de um aspecto do conteúdo na mesma opção [BER 97].

Palavras Cruzadas

Permite que sejam feitas “palavras cruzadas” com as questões. Neste tipo de questão devem ser definidas a pergunta e a resposta, sendo que a resposta possui um tamanho máximo de vinte caracteres e não deve conter espaços.
TABELA 4.2 - Vantagens e desvantagens de acordo com o tipo de questão.

<table>
<thead>
<tr>
<th>Questões</th>
<th>Vantagens</th>
<th>Desvantagens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacuna</td>
<td>- Menor possibilidade de acerto casual;</td>
<td>- Somente avalia a capacidade de memorização e de compreensão do conteúdo por parte do aluno.</td>
</tr>
<tr>
<td></td>
<td>- Relativa facilidade de construção e correção da questão;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Possibilidade de avaliação de uma amostra significativa do conteúdo, em pouco tempo, por serem respostas rápidas.</td>
<td></td>
</tr>
<tr>
<td>Certo ou Errado</td>
<td>- Relativa facilidade na elaboração, embora sejam necessários cuidados para evitar a ambigüidade;</td>
<td>- Possibilidade de 50% de acerto casual.</td>
</tr>
<tr>
<td></td>
<td>- A abrangência de uma amostra significativa do conteúdo, por serem respostas rápidas.</td>
<td></td>
</tr>
<tr>
<td>Relacionar</td>
<td>- Abrangência do conteúdo;</td>
<td>- Grande possibilidade de acerto casual;</td>
</tr>
<tr>
<td></td>
<td>- Fácil elaboração.</td>
<td>- A interligação entre os itens ou um erro em uma das frases podem provocar outros.</td>
</tr>
<tr>
<td>Ordenação</td>
<td>- Abrangência do conteúdo;</td>
<td>- Limitação do conteúdo – pois só é possível de utilizar este tipo de questão para conteúdos que permitam uma ordenação;</td>
</tr>
<tr>
<td></td>
<td>- Fácil elaboração;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Possibilidade de verificar a capacidade do aluno de fazer relações.</td>
<td></td>
</tr>
<tr>
<td>Múltipla Escolha</td>
<td>- Permite a verificação de objetivos nos níveis de compreensão, interpretação, raciocínio dedutivo e indutivo, julgamento, aplicação, etc...;</td>
<td>- Dificuldade de elaboração das questões;</td>
</tr>
<tr>
<td></td>
<td>- Reduz a possibilidade de erro casual na medida em que se aumenta o número de alternativas. Um bom número de alternativas é cinco;</td>
<td>- Maior quantidade de material e de tempo na organização do teste;</td>
</tr>
<tr>
<td></td>
<td>- Rapidez para responder.</td>
<td>- Facilidade de cola entre os examinados.</td>
</tr>
</tbody>
</table>

Fonte: [ROD 2000].

Um conjunto destas questões compõe determinada avaliação, cabendo ao professor selecionar quais tipos deseja, conforme o caso, pois cada tipo de questão apresenta suas peculiaridades. Estes tipos podem ser gerados de forma aleatória pelo AvalWeb ou o professor pode escolher os tipos desejados (fig. 4.11).

![FIGURA 4.11 - Parâmetro ‘tipos’ para geração da avaliação.](image)

A quantidade de tipos apresentados ao professor possui relação direta com o número de questões de cada tipo existentes no banco de dados, pois no momento da geração da página, caso existam no banco de dados apenas quinze questões de
“verdadeiro/falso”, o número máximo disponível para que o professor selecione neste tipo será de quinze questões (fig. 4.11).

No momento em que o professor escolhe os tipos, são realizadas algumas verificações pelo AvalWeb. Por exemplo, se o professor define onze questões do tipo múltipla escolha enquanto ele próprio determina que a avaliação poderá ter no máximo dez questões, o sistema irá apresentar uma mensagem informando o erro.

4.7.1.4 Período

É facultado ao professor que defina determinado período no qual os alunos podem realizar a avaliação. Para restringir o acesso somente no intervalo de datas e horário desejado, devem ser preenchidos corretamente os parâmetros do período, disponíveis no momento da geração da avaliação (figura 4.12).

![Figura 4.12 - Definição do período](image)

Quando o aluno entra no ambiente e antes de serem apresentadas as avaliações disponíveis, é realizada uma varredura no banco de dados de forma que possa ser verificado se, mesmo que a avaliação esteja disponível para aquele aluno, não existe alguma restrição quanto ao horário ou dia. Caso exista, não será apresentada a opção para o aluno realizar aquela avaliação.

Este recurso é útil em situações nas quais o professor deseja realizar a avaliação de todos os seus alunos em determinado laboratório com horário definido.

4.7.1.5 Pontuação

Entende-se por pontuação, a distribuição dos valores das questões. Esta pontuação é determinada pelo professor no momento da criação da avaliação.

![Figura 4.13 - Atribuição da pontuação](image)

O primeiro aspecto que deve ser determinado é o Valor por Questão, que pode ser:

- Pré-determinado: cada questão da avaliação terá o mesmo valor já determinado no momento de sua criação. Caso o somatório dos pontos das questões geradas possua valor superior ao máximo permitido, será realizada a validação adequada, informando ao professor que os valores determinados nas questões ultrapassam a nota máxima estipulada por ele para a avaliação;

- Padronizado: todas as questões terão o mesmo valor, definido pelo professor no momento da geração da avaliação. Neste tipo de distribuição, também é
realizada a validação para verificar se a soma dos valores individuais das questões atribuídos pelo professor, não ultrapassará o limite máximo de pontos da avaliação. Por exemplo, se o professor definir dez questões valendo 1,5 ponto cada e determinar o valor máximo de 10 pontos para a avaliação, o *AvalWeb* realizará a validação e informará que está havendo incoerência na definição dos valores. Utilizando esta opção, será redefinido no banco de dados o valor por questão, prevalecendo o último valor escolhido na geração da avaliação, uma vez que já existe na tabela ‘questão’ (anexo 1), determinado valor que lhe foi atribuído no momento de sua criação.

- **Aleatório:** o sistema realiza uma busca em todos os registros que satisfaçam a condição do nível de dificuldade e demais parâmetros. Após selecionar as questões, soma a pontuação individual de cada uma, até que seu total seja igual ao valor total da avaliação estipulado pelo professor;

- **Nulas:** as questões da prova não terão valor.

Pode ser escolhido também o valor total da avaliação. Isto pode ser utilizado, por exemplo, para situações em que o professor deseja realizar várias avaliações com pesos diferenciados e a avaliação que será aplicada pelo *AvalWeb* corresponda a uma parte da nota total do período.

4.7.1.6 Tópicos

Cada questão é armazenada no sistema como pertencente a um e somente um tópico. De certa forma, isto ajuda na organização da matéria por parte do professor, submetendo ao aluno, questões que realmente fazem parte do conteúdo proposto para determinada avaliação.

A relação entre a questão e o tópico permite ao sistema: (i) informar para os alunos quais são seus pontos fracos na matéria; (ii) fornecer subsídios para geração das provas adaptativas e (iii) informar ao professor quais tópicos representam maior dificuldade para os alunos, pois a existência de um bom número de erros da média dos estudantes em determinado tópico, é um forte indicativo de que o conteúdo relativo a este tópico não foi assimilado pelos alunos.

Para geração da avaliação, o professor pode determinar tópicos isolados ou escolher que sejam utilizados como base todos os tópicos.

Neste módulo é disponibilizada a lista de todos os tópicos que possuam questões associadas (fig. 4.14). Caso seja escolhida a opção para utilização de todos os tópicos, todas as questões com tópicos associados a elas que pertençam à disciplina na qual o professor está gerando a avaliação serão utilizadas, respeitando, é claro, outros parâmetros, como o nível de dificuldade.
FIGURA 4.14 - Definição dos tópicos para avaliação

Podem ocorrer situações em que não pode ser cumprida a seleção do professor, como por exemplo, se for escolhido o tópico x, sendo que neste tópico exista somente uma questão com nível de dificuldade ‘muito difícil’ associada a ele e seja estipulado que a avaliação não possua questões deste nível de dificuldade. Neste caso o tópico não será utilizado na avaliação, pois o nível de dificuldade possui prioridade sobre o tópico. Se ocorrer este tipo de problema, o professor será avisado.

4.7.1.7 Objetivos / Descrição da Avaliação

É permitido ao professor estipular os objetivos da avaliação. Estes dados são inseridos em um campo do tipo “texto”, permitindo que sejam colocadas inúmeras informações, que serão apresentados ao aluno no momento da realização da avaliação.

O preenchimento dos objetivos da avaliação é facultativo.

O professor deve, obrigatoriamente, definir uma descrição para a avaliação. A descrição cadastrada será a mesma apresentada ao aluno no momento em que ele escolher de qual avaliação quer participar.

4.7.2 Relatórios

Como o intuito do sistema, além de avaliar os alunos, é também o de proporcionar uma melhora no processo de ensino, o AvalWeb apresenta inúmeras informações sob a forma de relatórios que fornecem estatísticas diversas, contribuindo com ambos aspectos. Os relatórios utilizam o formato HTML tanto para o professor, como, em alguns casos, para o aluno.

A idéia das estatísticas é fornecer ao professor uma maneira de ver o desenvolvimento do desempenho dos estudantes, para investigar onde estão sendo encontradas dificuldades e comparar o desempenho do grupo como um todo ou individualmente. Também são demonstrados padrões de notas obtidas. Por exemplo, nota A, dez por cento da turma, B, cinco por cento e assim por diante.

O primeiro modelo de relatório apresentado na figura 4.15, é o relatório de estatísticas por questão. Neste relatório, é possível obter informações gerais sobre a prova, de maneira que o resultado global da avaliação e um resumo individual das questões possam ser analisados.

Também se pode obter uma coleção geral das respostas dos estudantes através de dados estatísticos, de forma que permitam a identificação de padrões ou tendências na compreensão e aprendizado dos estudantes. Isto poderá ser muito proveitoso para todo o aspecto pedagógico do curso, bem como para a identificação de questões relacionadas a esta.
Além de informações gerais sobre a avaliação, como número de alunos que a realizaram, média geral da turma, pontuação máxima estipulada, número de alunos que atingiram os objetivos mínimos e duração do teste, também são disponibilizadas neste relatório informações individualizadas de cada questão.

O objetivo destas informações é fornecer ao professor um feedback sobre características gerais como tempo mínimo e máximo para resposta dos alunos e o nível de dificuldade estipulado pelo professor e pelo sistema.

Através deste relatório, o processo de verificação de questões fica simplificado, pois com as informações obtidas o professor pode decidir de forma mais acertada se mantém, substitui ou elimina questões que foram submetidas aos alunos e não obtiveram o efeito esperado.

Relatório de Estatísticas por Questão

Prova no: 43899

Professor: Rodrigo Ferrugem Cardoso
Disciplina: Arquitetura e Organização de Computadores I

Relatório gerado em 25/04/2001, 23:00 Horas.

<table>
<thead>
<tr>
<th>Itens</th>
<th>Converte 456 na base decimal para binária</th>
<th>Questão 2...</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dificuldade estipulada pelo professor</td>
<td>Muito fácil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dificuldade calculada pelo sistema</td>
<td>Média</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média de acertos</td>
<td>40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número de respostas</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo médio para responder</td>
<td>0:03 hs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mínimo tempo gasto para resposta</td>
<td>0:01 hs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Máximo tempo gasto para resposta</td>
<td>0:06 hs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resposta correta</td>
<td>111001000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comentários:
- Maria Luiza
- João

![FIGURA 4.15 - Relatório de Estatísticas por Questão](image-url)

Através dos relatórios também são apresentadas informações para os alunos, como notas obtidas individualmente nas avaliações já realizadas, nota cumulativa de todas as avaliações anteriores, questões que não foram respondidas e tópicos nos quais o aluno apresenta maior dificuldade.
Tópicos que necessitam a revisão do aluno em ordem de importância:
1. - Registradores
2. - xxxxx
3. - yyyyy

FIGURA 4.16 - Relatório de Respostas por Aluno

O AvalWeb também disponibiliza o ‘Relatório de Respostas por Aluno’ (fig. 4.16), onde são apresentados dados a respeito da avaliação já realizada.

Além de obter o aproveitamento do aluno, através deste relatório o professor obtém detalhadamente a resposta de cada uma das questões, o tempo que o aluno levou para terminar a avaliação, uma comparação entre o aproveitamento daquele aluno e o aproveitamento geral da turma, o nível de dificuldade de cada questão, o tipo de questão, se o aluno preencheu todas as questões da avaliação e finalmente se foi aprovado ou não naquela avaliação. Também são mostrados os tópicos da matéria nos quais o aluno não obteve bom aproveitamento.

O relatório também apresenta uma relação de tópicos ordenados por acertos dos alunos. Através destes tópicos, são fornecidos subsídios para que o professor verifique quais as partes da matéria não estão sendo absorvidas pelos alunos ou cujas questões representam maior dificuldade.

Parte das informações contidas neste relatório são oriundas dos dados informados pelo professor no cadastramento da questão, ou seja, se os dados não forem condizentes com a realidade, as informações geradas não serão confiáveis.

Nos casos de auto-avaliações são apresentados para os estudantes resultados que incluem grade com o total de pontos obtidos, número de questões da avaliação, número de questões respondidas corretamente, número de questões incorretas e tempo transcorrido durante a resolução da avaliação, além de explicações do professor sobre como deveria ser a resposta correta em questões que o aluno errou.
4.8 Submissão de trabalhos

Usualmente, no ensino tradicional, em especial no meio universitário, são solicitados diversos tipos de trabalhos para os alunos realizarem a entrega em papel, disquetes ou até mesmo por e-mail, sendo que diversos destes trabalhos, mesmo que entregues em papel, são criados ou passam por meios digitais.

Com a intenção de atender ao máximo as necessidades existentes no ambiente de ensino e de forma que possa existir melhor organização e centralização dos trabalhos entregues, existe o módulo para submissão de trabalhos, onde os alunos podem enviar, de forma organizada, trabalhos em meio digital para os professores.

Através deste recurso, torna-se mais simples o acompanhamento da entrega dos trabalhos por parte dos alunos e sua posterior correção pelos professores, pois o professor pode visualizar relatórios apropriados que informam os alunos que efetivamente entregaram os trabalhos de forma adequada e no prazo certo.

O gerenciamento automatizado de trabalhos, inclui em algumas situações a redução do tempo de entrega e o erro humano como significantes vantagens na forma de submissão dos trabalhos. Outro benefício inesperado deste recurso, é que páginas WWW permitem aos estudantes a comparação de seus trabalhos e resultados com o resto da turma, o que ajuda a reduzir o senso de isolamento sentido por estudantes em ambientes à distância e possibilita seu acesso a outras fontes de informação [JON 96].

4.9 Adaptatividade

O AvalWeb também apresenta recursos de adaptatividade, implementados através da aplicação de avaliações com nível de dificuldade progressivamente maior ou menor. Este tipo de avaliação é submetido aos alunos em alguns casos, como por exemplo, provas de certificação.

Se forem geradas avaliações adaptativas, ao contrário do padrão normal, será apresentada somente uma questão por vez, pois a próxima questão apresentada depende da resposta atual do aluno.

As questões vão se moldando através da escolha do sistema, que determina as questões de acordo com o tipo de avaliação selecionada pelo professor. No caso de questões com nível de dificuldade progressivamente maior, o sistema busca sempre descobrir quais são os pontos fracos do aluno, alternando entre tópicos e níveis de dificuldade.

No momento da geração da avaliação pelo professor, deve ser informado ao sistema o tipo de avaliação, ou seja, normal, nível de dificuldade progressivo ou nível de facilidade progressivo.
TABELA 4.3 - Exemplo de nível progressivo de dificuldade

<table>
<thead>
<tr>
<th>Questão</th>
<th>Tópico 1</th>
<th>Tópico 2</th>
<th>Tópico 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questão 01</td>
<td>Fácil</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Questão 02</td>
<td>Fácil</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Questão 03</td>
<td>Fácil</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Questão 04</td>
<td>Média</td>
<td>OK</td>
<td>X</td>
</tr>
</tbody>
</table>

No exemplo da tabela 4.3, é apresentado o nível de dificuldade progressivo que propõe ao aluno, questões que adaptativamente vão se moldando para aumentar a dificuldade da avaliação.

A primeira questão submetida ao aluno foi sobre o tópico 1 e com nível de dificuldade fácil. Como o aluno respondeu corretamente, o *AvalWeb* troca de tópico, submetendo ao aluno o mesmo nível de dificuldade.

Supondo que desta vez o aluno erre a questão, a próxima a ser apresentada será no mesmo tópico e com o mesmo nível de dificuldade, pois com base nos resultados anteriores, o sistema supõe que o aluno não domina o tópico 02.

No caso de acerto da questão 03, é submetida uma nova questão ainda no mesmo tópico mas com nível de dificuldade superior.

Como demonstra o exemplo, no caso da definição do nível de dificuldade progressivamente maior, o *AvalWeb* tenta descobrir quais são os pontos fracos do aluno, trocando de tópicos e nível de dificuldade de acordo com a situação. No nível de dificuldade progressivamente menor, ocorre ao contrário.

4.10 Apresentação Dinâmica de Conteúdos

Para proporcionar facilidade de operação e coerência na apresentação de opções, o *AvalWeb* é dotado de recursos que apresentam conteúdos dinamicamente. Um exemplo disto pode ser visualizado na figura 4.17, que representa o momento do *login* do professor.

Quando o professor ingresa pela primeira vez no sistema após seu cadastro, o banco de dados é pesquisado em suas principais tabelas para verificar se já existem dados cadastrados. A partir deste ponto, a ferramenta realiza rotinas que têm por objetivo gerar a página *Web* somente com as ações possíveis para o professor que efetuou o *login*.

Isto minimiza a dificuldade de utilização em aspectos que ocorrem na maioria dos sistemas. Poderia haver, por exemplo, a tentativa de cadastrar tópicos sem haver cadastrado previamente a disciplina.

Em um ambiente que não utilize este tipo de recurso, normalmente será apresentada uma mensagem de erro ao professor solicitando que antes de cadastrar o tópico, deve ser cadastrada alguma disciplina. No *AvalWeb*, é desnecessário o uso de
tais mensagens, pois não existirá a opção de cadastrar tópicos, se não houver uma disciplina, existindo somente a possibilidade de cadastrar uma nova disciplina ou atualizar os dados pessoais.

![Diagrama Entidade-relacionamento](image)

Assim como não é possível cadastrar tópicos sem haver disciplinas, diversas situações podem ocorrer; por este motivo é efetuada uma busca no banco de dados para adaptar a página gerada à realidade do usuário existindo também este tipo de varredura no banco de dados em outras ocasiões similares.

4.11 Diagrama Entidade-relacionamento

Através do diagrama entidade-relacionamento do AvalWeb (fig. 4.18), pode-se observar que são contemplados inúmeros aspectos que fazem com que os dados armazenados (anexo 1) possam gerar informações variadas. Como os dados podem ser manipulados através de sentenças SQL, a recuperação de informações adicionais torna-se viável através de consultas à base de dados.

Existem entidades que não possuem dados armazenados no protótipo implementado, como por exemplo a tabela Log, que tem por função armazenar dados pertinentes à navegação dos usuários pelo ambiente, fornecendo subsídios para que em versões futuras possa ser realizada a análise destes dados e implementados recursos como a adequação do ambiente ao perfil do aluno.
Para melhor entendimento da figura 4.18, no anexo 1, são apresentados os dicionários de dados contendo informações sobre cada uma das tabelas apresentadas.
5 Protótipo

Para validar a modelagem conceitual do AvalWeb, foi desenvolvido um protótipo. Este capítulo apresenta os módulos que foram implementados, com a descrição de suas principais características.

Com o objetivo de criar uma ferramenta simples, que possibilite fácil manutenção e reuso, foi utilizada a linguagem PHP 4.0 e o banco de dados MySql, ambos de domínio público. O uso destas ferramentas evita que professores e alunos necessitem de softwares específicos, sendo pré-requisito apenas o acesso à Internet e browsers compatíveis com Netscape Navigator e Internet Explorer.

5.1 Descrição

O AvalWeb consiste de vários módulos, sendo que o acesso a eles dependerá do tipo de usuário, que podem ser alunos ou professores.

Para acesso ao sistema, é necessário o cadastramento deste usuário. A figura 5.1 apresenta a janela inicial para acesso ao sistema.

FIGURA 5.1 – Tela inicial para acesso ao sistema

Nesta janela (fig. 5.1) os usuários, professores ou alunos já cadastrados, devem inserir seu login e senha para acessar o sistema. Caso ainda não sejam cadastrados, devem escolher a opção para cadastramento “Novo Professor” ou “Novo Aluno”, dependendo de seu tipo.
No caso de novos professores, é apresentada a janela inicial para cadastramento de seus dados pessoais juntamente com outras informações relativas à instituição, disciplina e turma (fig. 5.2).

Para realizar seu cadastramento, o professor é obrigado a informar os dados relativos à instituição, disciplina e turma, evitando que tenham que ser inseridos posteriormente, o que poderia dificultar a utilização do sistema, pelo desconhecimento por parte do professor da sequência adequada para cadastramento.

Após o cadastrar-se no sistema, o professor terá uma série de opções que são:
- Criação, alteração e exclusão de disciplinas, questões, tópicos e turmas;
- Ver alunos matriculados por disciplina;
- Listagem de questões por tópico;
- Atualização de dados pessoais;
- Geração de avaliações com opção para gerar avaliações normais, com 10 questões e podendo estipular os níveis de dificuldade;
- Relatório simples de notas dos alunos;

Após a tela de cadastramento, onde o professor insere seus dados, é apresentada a tela inicial do professor. Para que ele possa utilizar qualquer um dos módulos apresentados nesta janela (fig. 5.3), basta selecionar a opção desejada e clicar no botão OK.
Caso existam disciplinas cadastradas, estas serão apresentadas na parte inferior do frame. Este módulo é denominado de “Módulo Professor” (Fig. 5.3), e contém todas as opções que podem ser acessadas por ele.

Para fornecer maior praticidade, é disponibilizado o acesso direto a todos os módulos, tanto através das opções normais, apresentadas no frame principal, quanto usando a barra de ferramentas apresentada na figura 5.4.

Nesta barra de ferramentas (Fig. 5.4), estão disponíveis diversas opções que são respectivamente, da esquerda para direita:

1 – Dados Pessoais (permite a alteração dos dados pessoais do professor);
2 – Questões (permite que sejam cadastradas novas questões);
3 – Tópicos (O professor pode cadastrar tópicos da disciplina);
4 – Disciplina (permite que o professor cadastre uma nova disciplina ou altere os dados de uma disciplina existente);
5 – Avaliações (permite que sejam geradas provas para serem aplicadas aos alunos);
6 – Relatórios (através desta opção serão apresentados os relatórios disponíveis no sistema);

Estas opções estão presentes no frame superior e estão disponibilizadas somente para professores.

Outro módulo presente no protótipo é o “Cadastro de questões”, que permite realizar o cadastramento das questões que posteriormente serão utilizadas para geração das avaliações. Neste módulo (Fig. 5.5), devem ser informados inúmeros parâmetros sobre a questão a ser cadastrada. Inicialmente, deve ser definido o tipo de questão, o nível de dificuldade, qual seu valor, tempo máximo para resposta e a qual disciplina e tópico pertencerá a questão.

O parâmetro de tempo máximo para a resposta somente será levado em conta no caso de avaliações com nível de dificuldade progressivamente maior ou menor, uma vez que somente neste tipo de avaliação é apresentada uma questão por página.

![Figura 5.5 – Módulo para cadastramento de questões.](image-url)

Opcionalmente, pode ser inserido um texto com a explicação que será apresentada ao aluno em auto-avaliações, caso sua resposta esteja errada. Após o professor definir os dados iniciais, será apresentada outra janela que permite o cadastramento do enunciado e das alternativas da questão, especificando qual é a correta (fig. 5.6).
FIGURA 5.6 – Segunda tela para cadastramento de questões.

Após o cadastramento de algumas questões, o professor pode realizar a geração da avaliação. O acesso ao módulo para geração de avaliações, pode se dar pela escolha da opção apresentada na figura 5.3 ou através de acesso direto pela “Barra de Ferramentas”.

FIGURA 5.7 – Módulo para geração de avaliações.
Neste módulo (fig. 5.7), o professor pode realizar a geração da avaliação selecionando os parâmetros que deseja. Caso não seja selecionado nenhum parâmetro, o AvalWeb utilizará seu padrão, ou seja, avaliação normal, com 10 pontos no total, sendo que cada questão vale 1 ponto cada, distribuição de 25% para cada nível de dificuldade, questões do tipo múltipla escolha, sem questionário apresentado ao final para os alunos e utilizando todos os tópicos.

Após a geração da avaliação, um preview é apresentado para que o professor possa visualizar se o resultado foi adequado (fig. 5.8).

![FIGURA 5.8 – Visualização da avaliação.](image)

Esta visualização (Fig. 5.8) deve ser considerada apenas uma prévia, visto que se forem geradas avaliações diferenciadas para os alunos ou ainda avaliações com nível de dificuldade progressivamente maior ou menor, pode ser que as questões apresentadas não sejam as mesmas que serão submetidas aos alunos.

Para o acesso de alunos, é necessário que seja realizado o cadastramento de seus dados através da opção “Novo aluno”, presente na tela inicial.

Após o aluno preencher o cadastro com os dados necessários, será enviado um e-mail para o professor (cap. 4.5) solicitando a confirmação da matrícula do aluno para realizar suas avaliações. Caso o professor aceite o aluno, deverá selecionar a opção reply de seu software de correio eletrônico, pois desta forma a mensagem juntamente com a senha será enviada para o aluno que solicitou a matrícula na turma.

No protótipo, está disponibilizada para os alunos somente a opção para realizar avaliações comuns, sem visualização de relatórios.
5.2 Infraestrutura necessária

Há 24 anos atrás, [BLO 77] escreveu “Nem todos os sistemas escolares possuem uma máquina de leitura ótica ou um computador. Além disso alguns computadores pequenos não têm capacidade de memória suficiente para realizar a análise e a correção de testes acima descritas. Isto não é motivo para renunciar à valiosa contribuição do computador no desenvolvimento de um sistema de avaliação. Um sistema escolar que não possui o equipamento necessário deveria se afiliar a um centro externo de computação”.

Atualmente, com o poder computacional existente, pode-se considerar esta tarefa bem mais fácil de ser implementada.

Como a ferramenta foi desenvolvida para ser utilizada na Web, qualquer usuário, utilizando um browser compatível com Netscape Navigator ou Internet Explorer pode ter acesso ao AvalWeb.

Por parte do servidor, para execução do protótipo é necessário que todos os protocolos estejam adequadamente configurados, permitindo o acesso externo através da Internet. Devem estar instalados e corretamente configurados também o PHP 4.0 ou superior e MySql.

5.3 Interface

O uso de formas diferenciadas de mídia como vídeos, sons, textos, etc. atingem objetivos específicos no processo de ensino-aprendizagem; no entanto estas mídias não são utilizadas em grande quantidade, pois seu emprego requer maiores recursos, além de demandar maior tempo para implementação [RIT 2000].

Portanto o ideal é que os recursos empregados para avaliar o aluno utilizem imagens ou características diferenciadas para interação. Inicialmente, o AvalWeb conta com a possibilidade de trabalhar com imagens e textos, podendo ter mídias adicionais em versões futuras.

A interface do protótipo é [VIC 99]:

- **Conveniente**: As operações podem ser realizadas através de acesso direto, sempre disponíveis em todas as interfaces;

- **Consistente**: Existem opções-padrão que estão sempre disponíveis nos mesmos locais, evitando assim que o usuário perca o ponto de referência e contribuindo para um melhor aproveitamento do sistema;

- **Complacente**: Em todas as interfaces existe o botão “Voltar”, que retorna ao ponto anterior. Nos exercícios existe uma opção para apagar os dados que foram inseridos, o botão “Limpar” para que o aluno possa limpar o que foi inserido erroneamente.

O objetivo da interface utilizada no AvalWeb é fornecer facilidade de operação para seus usuários, tentando aproximar o conteúdo da janela do browser o máximo possível com uma avaliação normal, realizada no papel.

5.4 Integração com outros ambientes

Ao mesmo tempo em que características adicionais sobre as formas “clássicas” de avaliação dependem da habilidade para usar bases de dados padrão, maneiras
inovadoras exigem bem mais de arquiteturas de sistemas de ensino baseados na Web [HOP 98].

Alguns pacotes podem ser estendidos para incluir capacidades para algumas das inovações mais recentes nas maneiras de ensinar e avaliar, mas não existe um produto que possua todas as capacidades reunidas.

Por esta razão, maneiras inovadoras de avaliação e ensino necessitam da capacidade para integrar sistemas de ensino baseados na Web com produtos de múltiplos desenvolvedores. Como são utilizados diferentes formatos nos produtos comerciais existentes, bibliotecas de testes não podem ser facilmente integradas ou acessadas, reduzindo reuso e portabilidade [TIN 97].

Para minimizar estes problemas, o AvalWeb possui, como uma de suas características, a possibilidade de integração com ambientes já existentes.

Pode ser utilizado em ambientes de educação à distância já existentes através de links do ambiente original, que referenciam páginas externas. Estes links estão disponíveis na maioria dos ambientes de ensino à distância e proporcionam que em determinados momentos, o aluno possa navegar na Web sem sair do sistema.

A integração com outras ferramentas pode se dar também através do redirecionamento do ambiente original para o AvalWeb através da passagem de parâmetros. Quando ocorrer isto, serão solicitados o login e a senha para realizar a autenticação do usuário e será executada a tarefa solicitada de acordo com o parâmetro recebido.

Apesar dos recursos de integração existentes, o AvalWeb não proporciona integração automática com outros ambientes existentes, pois a diversidade de sistemas deste tipo existentes no mercado é bastante grande, o que tornaria o trabalho inviável sem a existência de um padrão definido.

O método GET passa argumentos de uma página para a próxima como parte da string de consulta URL. Quando utilizado para tratamento de formulário, GET acrescenta o nome indicado de variável(is) e valor(es) para o URL designado no atributo ACTION com um separador de ponto de interrogação e envia tudo para o agente de processamento que é o PHP neste caso.

Exemplo:

```html
<HTML>
<HEAD>
<TITLE> Exemplo de uso do GET </TITLE>
</HEAD>
<BODY>
<FORM ACTION ="http://localhost/aval.php" METHOD="GET">
<br>
Selecione a opção: <BR>
(SELECT NAME="Opcao" SIZE=2>
<OPTION VALUE = "Relatorio">Relatorio de alunos
<OPTION VALUE = "Cadastro">Cadastro de professores
</SELECT>

<P><INPUT TYPE="submit">
</FORM>
</BODY>
</HTML>
```

O resultado deste exemplo de formulário é apresentado para o usuário como na figura 5.9.
FIGURA 5.9 - Exemplo de apresentação do formulário

Quando o usuário faz uma seleção e clica no botão Submit, o navegador agrupa esses elementos e constrói a string de URL da seguinte forma:

Logão após é feito o envio desta string para o espaço de endereçamento do navegador como uma nova solicitação. O script do PHP para o qual o formulário precedente é enviado (aval.php) anexará as variáveis GET do final da string de solicitação e realizará as ações apropriadas de acordo com os parâmetros.

No exemplo da figura 5.9, caso o usuário solicitasse a opção “Relatório de Alunos”, poderia receber na janela do browser uma listagem com todos os estudantes.

Desta maneira, é possível acessar a ferramenta através de outros sistemas simplesmente através da passagem de parâmetros, bastando que o usuário que irá passar os parâmetros saiba qual a sintaxe e função de cada um deles. Na tabela 4.3, são apresentados os parâmetros que podem ser passados para o AvalWeb.

TABELA 5.1 – Parâmetros que podem ser passados para a ferramenta

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Função</th>
</tr>
</thead>
<tbody>
<tr>
<td>/aval/okadis.php?login=xxxx</td>
<td>Módulo de disciplinas</td>
</tr>
<tr>
<td>/aval/oktop.php?login=xxxx</td>
<td>Módulo de tópicos</td>
</tr>
<tr>
<td>/aval/turma.php?login=xxxx</td>
<td>Alunos matriculados por turma</td>
</tr>
<tr>
<td>/aval/gerque.php?login=xxxx</td>
<td>Geração de avaliações</td>
</tr>
<tr>
<td>/aval/cadque.php?login=xxxx</td>
<td>Criação de questões</td>
</tr>
<tr>
<td>/aval/relresal.php?login=xxxx</td>
<td>Relatório do desempenho por aluno</td>
</tr>
<tr>
<td>/aval/atupro.php?login=xxxx</td>
<td>Alterar dados pessoais</td>
</tr>
</tbody>
</table>

Por exemplo, “okadis”, inclui exclui ou altera disciplina de acordo com o parâmetro ?acao que é passado pela ferramenta. O parâmetro passado neste caso seria: “...okadis?login=rodrigo?acao=incluir”.

Uma dificuldade existente, é que o método GET não é adequado para login, visto que o nome de usuário e a senha são completamente visíveis na tela bem como potencialmente armazenados na memória do navegador de cliente como uma página visitada [CON 2001].

Como o AvalWeb implementa restrição de acesso para diferentes usuários, no momento da passagem de parâmetros serão solicitados seu login e senha para realização de autenticação. O login poderá ser passado como parâmetro, mas mesmo desta forma será solicitada a senha.

Outra forma de realizar a integração com ferramentas diferentes é através de ODBC, que é uma API que permite separar um programa de um banco de dados.
Quando é escrito código para interagir com um banco de dados, devem ser adicionadas instruções para permitir o acesso a partir de outras bases de dados usando API proprietárias.

A forma de acesso via ODBC, irá depender dos sistemas que irão realizar o acesso à ferramenta. No protótipo atual, já está criado um usuário específico chamado “user_odbc”, através do qual é possível a conexão com o banco de dados atual enviando os parâmetros necessários para o correto funcionamento do ODBC, juntamente com a senha de acesso.
6 Validação do protótipo

Para validar as ideias propostas e pesquisar os ganhos obtidos com a utilização da ferramenta, foi realizado um estudo de caso com alunos da URCAMP – Bagé.

Existia a necessidade do conhecimento de informações pertinentes à operação do *AvalWeb*, através da opinião dos estudantes com relação à interface, facilidade de utilização, benefícios ou problemas com avaliações via *Web*, além de comentários gerais sobre o sistema.

Também era necessário a obtenção de um *feedback* sobre as vantagens ou desvantagens apontadas através da comparação com provas tradicionais e se a ferramenta proposta é uma alternativa considerada válida e eficiente pelos alunos.

Para melhor validação de ferramentas deste tipo, é necessário que seja realizado o levantamento de dados com base em algumas considerações, como fornecer para o público que será pesquisado formulários com tópicos voltados somente para o objetivo da pesquisa, apresentados de forma amigável aos usuários e oferecer diferentes possibilidades para pontuação, como por exemplo uma escala de 0 a 10 [FOX 97].

Dada a impossibilidade de realização de um experimento a longo prazo, devido às restrições de tempo para conclusão deste trabalho, foram realizados dois experimentos com alunos.

6.1 Ambiente e público-alvo

O estudo de caso foi realizado em dois momentos distintos no laboratório de informática da Universidade da Região da Campanha – URCAMP.

Os usuários que realizaram avaliações *on-line*, são estudantes do curso de Informática do terceiro e quarto semestres. O laboratório é composto por 18 computadores *AMD K6 II 500 MHz*, conectados à Internet e dispostos como apresenta a figura 6.1.

![FIGURA 6.1 – Disposição física dos computadores no ambiente](image-url)
Ao todo, foram pesquisados 34 alunos, em dois grupos distintos, sendo o primeiro grupo com 18 alunos da disciplina de Arquitetura e Organização de Computadores II e o segundo com 16 alunos de Arquitetura e Organização de Computadores I.

6.2 Metodologia aplicada

Para atingir a meta de realização dos dois experimentos, foi utilizada a seguinte metodologia:

1. Foram aplicadas provas diferenciadas para os dois grupos de alunos, um grupo em cada disciplina, no laboratório de informática (fig. 6.1);

2. A nota que o aluno obtivesse na avaliação faria parte da nota final do semestre, obtida através da média aritmética com a nota da primeira prova, realizada no início do semestre;

3. Inicialmente, os alunos foram avisados de que suas ações ficariam armazenadas no arquivo de log;

4. Foram esclarecidas as regras gerais para realização da avaliação. O aluno deveria ter somente uma janela do browser ativa, não poderia acessar outros programas e deveria entrar com seu login e senha, fornecidos pelo professor antes da realização da avaliação; como o protótipo não estava completamente desenvolvido, as senhas não puderam ser geradas automaticamente conforme previsto na modelagem do AvalWeb, portanto foram inseridas manualmente pelo professor;

5. Foi informado para os alunos o endereço de acesso à ferramenta e estipulado o tempo de uma hora para realização da avaliação;

6. Após o aluno terminar a avaliação (fig. 6.2), selecionando a opção “enviar respostas”, seguindo procedimentos descritos em [REN 2000] foi apresentada sua nota e entregue um formulário de pesquisa no papel (tab. 6.1) para preenchimento das opiniões daquele aluno sobre o sistema;

FIGURA 6.2 – Parte da prova submetida aos alunos
TABELA 6.1 - Formulário de questionamentos submetido aos alunos

<table>
<thead>
<tr>
<th>Questão</th>
<th>Opções</th>
<th>Resposta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nível de conhecimento em informática</td>
<td>Baixo / Médio / Alto</td>
<td></td>
</tr>
<tr>
<td>Gosto de trabalhar com computadores</td>
<td>Sim / Não / Sem opinião</td>
<td></td>
</tr>
<tr>
<td>Avaliações on-line, via Web são mais fáceis de responder do que testes tradicionais (com “caneta e papel”)</td>
<td>Sim / Não / Sem opinião</td>
<td></td>
</tr>
<tr>
<td>Você confia em avaliações via Web</td>
<td>Sim / Não / Sem opinião</td>
<td></td>
</tr>
<tr>
<td>Avaliações na Web facilitam a “cola”</td>
<td>Sim / Não / Sem opinião</td>
<td></td>
</tr>
<tr>
<td>O teste na Web é fácil de ler na tela</td>
<td>Sim / Não / Sem opinião</td>
<td></td>
</tr>
<tr>
<td>O teste na Web aumenta minha ansiedade</td>
<td>Sim / Não / Sem opinião</td>
<td></td>
</tr>
<tr>
<td>Principal problema de testes via Web sob seu ponto de vista</td>
<td>Lentidão / Segurança / Dificuldade de uso / nada / outros</td>
<td></td>
</tr>
<tr>
<td>Gosto de testes baseados na Web</td>
<td>Sim / Não / Sem opinião</td>
<td></td>
</tr>
<tr>
<td>O sistema é fácil de operar</td>
<td>Números de 1 a 10 (sendo 10 mais fácil e 1 mais difícil)</td>
<td></td>
</tr>
<tr>
<td>Para próxima avaliação, qual estilo você escolheria entre o teste baseado na Web e o teste tradicional com “caneta e papel”</td>
<td>“Caneta e Papel” Na Web Sem preferência</td>
<td></td>
</tr>
<tr>
<td>Qual é sua idade ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qual nota você atribuiria para avaliações deste tipo, através da Internet, se comparadas com avaliações tradicionais no papel ?</td>
<td>(1 a 10)</td>
<td></td>
</tr>
</tbody>
</table>

Comentários / Sugestões

Os objetivos do questionário apoiados em [HAC 2000], foram os seguintes: (i) analisar as características gerais do ambiente, dando ênfase às facilidades fornecidas para resolução de questões por parte dos alunos e (ii) avaliar os recursos do sistema para tornar a interação do aluno com o ambiente estimulante.

6.3 Problemas ocorridos

Após serem informados aos alunos os procedimentos que deveriam ser seguidos, ocorreram alguns problemas na resolução da avaliação sendo que alguns por culpa dos próprios estudantes, como o que ocorreu com alunos que digitaram o endereço incorreto para o acesso ao sistema ou ainda com os que digitaram a senha errada.

Um dos alunos que não dominava a matéria, tentou simular uma falha no computador desligando-o propositadamente na esperança de conseguir enganar o sistema, no entanto bastou ele acessar o endereço fornecido para realizar a avaliação novamente.

Houve uma falha na rede em um dos equipamentos, sendo apresentada apenas metade da avaliação para o aluno, que teve que reiniciar o sistema e retomar a avaliação em outro computador.
Houve também a tentativa de “cola” entre alguns alunos, o que tornava-se aparentemente mais fácil tendo em vista o layout do laboratório (fig. 6.1) onde o aluno do computador 1 por exemplo, poderia simplesmente olhar em diagonal para o monitor de seu colega, no computador 2.

Este problema foi minimizado por dois aspectos, o primeiro foi a orientação para que os alunos configurassem os computadores para uma resolução padrão (800x600), pois alguns equipamentos estavam com a configuração de (640x480), aumentando o tamanho dos caracteres e conseqüentemente a facilidade de visualização para o colega ao lado. O segundo aspecto deve-se ao sistema, que gera questões com a ordem diferenciada para alunos distintos, sendo que além da ordem de apresentação das questões, também é modificada a ordem de apresentação das opções de escolha de cada uma destas questões.

6.4 Resultados obtidos

Com a aplicação dos questionários, foi possível obter a impressão geral que os alunos obtiveram com o uso da ferramenta (tab. 6.2).

TABELA 6.2 – Resultado obtido com a aplicação do questionário aos alunos

<table>
<thead>
<tr>
<th></th>
<th>Baixo</th>
<th>Médio</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nível de Conhecimento em Informática</td>
<td>2</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>Sim</td>
<td>33</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Não</td>
<td>6</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Gosto de trabalhar com computadores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avaliações via Web são mais fáceis de responder do que testes tradicionais.</td>
<td>25</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Você confia em avaliações via Web</td>
<td>27</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Avaliações na Web facilitam a “cola”</td>
<td>1</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>O teste na Web é fácil de ler na tela</td>
<td>33</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>O teste na Web aumenta minha ansiedade</td>
<td>17</td>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>Gosto de testes baseados na Web</td>
<td>26</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Na Web</th>
<th>S/ prefer.</th>
<th>"Caneta e papel"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estilo de teste para próxima avaliação.</td>
<td>24</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Principal problema de testes via Web</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentidão</td>
<td>1</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Segurança</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dificuldade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>outros</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Média de Idade (aproximada)</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O Sistema é fácil de operar (média)</td>
<td>9,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nota média de avaliações através da Internet</td>
<td>8,75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comentários preenchidos pelos alunos (campo opcional)

- A avaliação via Web não dá chance de argumentação e principalmente confunde muito.
- Acho que este modo de avaliação nos deixa mais nervosos.
- Praticando ficará melhor!!
- Mais avaliações deste tipo!
- Acho que todos os professores deveriam seguir este exemplo! Bem mais moderno e os alunos economizam caneta.
- É bom fazer avaliação pela Web, é mais rápido.
Para um melhor entendimento, são apresentados diversos gráficos contendo o cruzamento dos dados obtidos na tabela 6.2.

Certas informações que não são apresentadas graficamente também possuem grande importância na pesquisa realizada, como é o caso dos comentários e sugestões escritos por alunos.

Com estas informações, pode-se observar que existem alguns pontos que não são totalmente satisfeitos pelo modelo proposto, que não possibilita a argumentação e aumenta a ansiedade por parte dos alunos.

Quanto à observação realizada por um estudante de que as questões apresentadas confundem muito, irá depender essencialmente do professor, que é o responsável por sua elaboração.

![Gráfico debarra: Avaliações via Web são mais fáceis do que testes tradicionais. O teste na Web é fácil de ler na tela](image)

FIGURA 6.3 – Facilidade de operação do sistema

Através do gráfico apresentado na figura 6.3, é possível verificar que a maioria dos alunos considera que testes via Web com o AvalWeb são mais fáceis do que testes no papel. Outro dado apresentado é que somente um aluno considerou difícil a leitura do conteúdo da avaliação na tela do computador.

Somando-se aos dados apresentados na figura 6.3, também foi obtida a média geral de 9,21 na facilidade de operação do sistema, com o que se pode concluir que a dificuldade de operação encontrada pelos alunos é muito pequena.
Através do gráfico apresentado na figura 6.4, pode-se afirmar que um grande número de alunos acredita que avaliações via Web com o AvalWeb, são confiáveis e dificultam a troca de informações entre colegas durante sua realização.

De acordo com o gráfico apresentado na figura 6.5, sem dúvida os alunos demonstram uma grande ansiedade para trabalhar com testes na Web, o que talvez possa ser uma dificuldade inicial, que gradativamente poderá diminuir conforme for aumentando a utilização da ferramenta.

Cabe salientar que esta foi a primeira vez que todos os alunos realizaram alguma espécie de avaliação via Internet.

A aceitação dos testes foi satisfatória, visto que dos 34 alunos, 26 responderam que gostaram de realizar avaliações na Web.
De acordo com o gráfico da figura 6.6, observa-se que em sua maioria, os alunos não vêem problemas na realização de testes via Web, apesar de que se pode observar que uma parcela significativa de 15% dos alunos, considera a segurança como o maior problema em avaliações deste tipo.

Neste contexto, supõe-se que problemas de segurança referem-se a possíveis modificações que possam ocorrer nas notas realmente obtidas pelos alunos na realização da avaliação.

Como indicativo de aceitação da ferramenta por parte dos alunos, é apresentado o gráfico da figura 6.7, onde é mostrado que 70,5% dos alunos preferem que sejam realizados testes via Web para a próxima avaliação.

Outra informação que fornece dados indicativos de aceitação do sistema é que a nota média atribuída pelos alunos para avaliações via Web comparativamente com avaliações tradicionais, foi de 8,75.

Como informação adicional, a média geral obtida pelos alunos na avaliação foi de 6,40, muito próxima à nota obtida pela média de todos os alunos no semestre anterior.
7 Conclusões

A avaliação de alunos em ambientes de ensino tradicionais, é uma das tarefas que demandam bastante tempo e consomem um esforço enorme por parte dos professores. O problema se agrava quando se tratam de turmas com muitos alunos, tornando-se bastante trabalhosa a correção das provas.

Se já é trabalhosa a correção simples destas provas, somente com a atribuição de notas, torna-se ainda mais difícil a extração de estatísticas que contribuam com informações adicionais sobre as avaliações realizadas pelos alunos. Estas estatísticas podem incluir dados usuais, como por exemplo, a média das notas dos alunos, ou aspectos adicionais, como percentuais de acertos das questões.

Avaliações via Web surgem como uma alternativa bastante viável, tanto para reduzir estes problemas, quanto para fornecer outros benefícios. Ainda que este processo possa estar sujeito a eventuais falhas, que podem ocorrer por problemas na rede, nos computadores ou ainda por ansiedade ou erros de operação dos alunos, as vantagens obtidas justificam sua utilização.

Com o uso do AvalWeb, complementarmente ao ensino tradicional ou como parte de um ambiente de Ensino a Distância, o processo de avaliação torna-se rápido e automático. Isto não elimina a responsabilidade do professor, mas libera-o para tarefas adicionais e fáceis de operação dos alunos, as vantagens obtidas justificam sua utilização.

O AvalWeb apresenta diversas características que se aproximam ao máximo de avaliações tradicionais, no papel. Como exemplo disso, pode ser citado o “bloco de rascunhos”, que é uma área reservada para que os alunos anotem tópicos a seu critério [BLA 99].

Com o sistema, as avaliações ficam armazenadas em um servidor central, evitando acúmulo de papel e fornecendo resultados mais rápidos quando se tratam de turmas com um grande número de alunos.

O professor pode escolher os tópicos a partir dos quais será gerada a avaliação, o que auxilia para que no futuro sejam geradas informações sobre o desempenho dos alunos nestes tópicos. A existência de um bom número de acertos da média dos alunos em determinado tópico, é um forte indicativo de que a parte da matéria relativa a este tópico foi assimilada pelos alunos.

Para contribuir com o aprendizado do aluno, avaliações não devem simplesmente fornecer uma nota final [REN 2000]. Neste contexto, no módulo de auto-avaliação, em caso de erro do aluno, são apresentadas além do resultado final, explicações do professor sobre como deveriam ser as respostas corretas.

Já que trata-se de uma ferramenta para complementar o ensino, é essencial que existam aspectos que facilitem a integração com outros ambientes, proporcionando uma aplicabilidade real para o trabalho. A integração entre o AvalWeb e ambientes já existentes, se dá através do simples redirecionamento pelo ambiente original através da passagem de parâmetros ou através de conectividade do banco de dados via ODBC.

Para obtenção de um feedback sobre as ideias propostas, foi realizada uma etapa de validação do protótipo, realizada com dois grupos de alunos. Devido as vantagens
apresentadas pela ferramenta como resultado imediato e facilidade de operação, a maior parcela dos alunos optou por realizar a próxima avaliação via Web, o que evidencia a aceitação deste modelo de avaliações.

Considerando que um importante papel a ser desempenhado pelo computador na educação é a avaliação [HOP 98], e aperfeiçoar as atuais técnicas torna-se um elemento facilitador, tanto para alunos quanto para professores, pode-se afirmar que os objetivos pretendidos foram alcançados tendo em vista que o trabalho apresentado propõe maneiras adicionais de avaliação dos alunos, fornecendo subsídiios para que possa ocorrer uma melhora no ensino por parte do professor e na aprendizagem por parte do aluno.

7.1 Principais contribuições deste trabalho

Considera-se como contribuições as características que possam servir de futuras referências a novos trabalhos, que venham a comprovar determinadas teorias e que possam aproveitar trabalhos de pesquisa ou produtos já desenvolvidos.

Como contribuição, pode ser citado o fato de que as avaliações são geradas automaticamente, com base em níveis de dificuldade das questões, estipulados pelo professor. Estes níveis podem ser verificados constantemente através do feedback fornecido pelo sistema, o que pode ser útil em situações onde, por exemplo, seja informado o nível de dificuldade de uma questão como fácil, e o sistema sugira que esta é uma questão difícil. Isto pode levar o professor a dois caminhos principais, (i) ou pode ter sido informado incorretamente o nível de dificuldade da questão ou (ii) determinado tópico que o professor esperava que estivesse bem absorvido pelos alunos não estava.

Com isto, é possível a geração de avaliações diferenciadas para alunos da mesma turma. No entanto, apesar existirem questões diferentes ou com a ordem de apresentação alterada, o nível de dificuldade geral é o mesmo, evitando injustiças e também podendo oferecer vantagens em aspectos como a redução da “cola”. Este recurso está presente em algumas ferramentas analisadas, mas da maneira que está implementado, não assegura igualdade de dificuldade entre as diferentes avaliações distribuídas aos alunos.

É possível também a aplicação de provas adaptativas a critério do professor, reduzindo ou aumentando o nível de dificuldade progressivamente, de acordo com as respostas anteriores do aluno.

Dos ambientes analisados, somente o Perception permite estipular data e horário para a aplicação de avaliações, no entanto para utilização deste recurso é necessária a utilização do browser proprietário PSB. Isto não ocorre com o AvalWeb, que possibilita que seja definido o período e horário, independentemente do browser utilizado por alunos e professores.

Outra falha detectada nas ferramentas analisadas foi quanto à possibilidade de utilizar pesos e pontuações diferentes nas provas ou individualmente nas questões. Dos poucos sistemas que permitem que possa ser configurada pontuação diferente de 10, nenhum possibilita a criação de questões valendo números fracionários, o que pode ser útil em alguns casos, especialmente em casos de uso como complemento ao ensino tradicional. Para suprir esta falha, o AvalWeb apresenta a possibilidade de definir qualquer número inteiro para o valor final da avaliação e qualquer número fracionário ou inteiro para cada questão.
Opcionalmente, o grau de satisfação que os alunos obtiveram com o curso ou treinamento é pesquisado através da submissão automática de questionários ao final das avaliações. Além de utilizar modelos existentes, é possível que o professor crie, por exemplo, seu próprio questionário sobre sua aula através de linguagem HTML ou qualquer software que permita a criação de páginas Web.

7.2 Trabalhos futuros

Com a realização do estudo sobre as ferramentas para avaliação de alunos na Web existentes no mercado e o desenvolvimento do AvalWeb, foram vislumbrados alguns trabalhos futuros que poderão ser desenvolvidos.

Um dos pontos que deve ser trabalhado refere-se à validação. Inicialmente foi realizada a validação do protótipo por dois grupos de alunos. Para que se possa generalizar os resultados, é imprescindível realizar a validação com professores e também com um maior número de alunos.

Devem ser implementados recursos que levem em conta o perfil de alunos e professores, personalizando o ambiente de acordo com suas características individuais.

Devem ser aperfeiçoadas rotinas de segurança e autenticação de usuários, tornando o sistema mais confiável.

Para visualização correta de prévias das avaliações geradas pelos professores, recomenda-se a implementação de visualização em forma de árvores binárias, em função da previsão de respostas corretas ou erradas dos alunos.

Para diminuir a possibilidade de fraudes devem ser estudadas maneiras de bloquear o estudante caso ele tente ir a outro site ou acessar recursos como chat ou e-mail enquanto está respondendo o teste.

Em trabalhos futuros também devem ser implementados todos os recursos previstos na modelagem da ferramenta e a incorporação de novas características, como questões do tipo dissertativas e possibilidade de apresentação de mídias diferenciadas juntamente com o enunciado das questões, como vídeos, por exemplo.
Anexo 1 Dicionários de Dados

LEGENDA (Ch): R Requerida - # Chave primária (requerida) - * Chave estrangeira (requerida)

ALUNO

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Nome</td>
<td>Char (50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Datanasc</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Login</td>
<td>Char (10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Senha</td>
<td>Char (6)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Endereço</td>
<td>Char (40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complemento</td>
<td>Char (15)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Bairro</td>
<td>Char (30)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Cidade</td>
<td>Char (25)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Estado</td>
<td>Char (2)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>CEP</td>
<td>Char (10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telefone</td>
<td>Char (20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-mail</td>
<td>Char (40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://</td>
<td>Char (50)</td>
<td>Endereço www opcional do aluno</td>
</tr>
</tbody>
</table>

DADOS PESSOAIS DO ALUNO

LOTADO

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Comentários</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Login</td>
<td>Char(10)</td>
<td>Chave estrangeira de Aluno</td>
</tr>
<tr>
<td>#</td>
<td>Turma</td>
<td>Char(50)</td>
<td></td>
</tr>
</tbody>
</table>

DISCIPLINA

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Comentários</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Cód</td>
<td>Int(4)</td>
<td>Código da disciplina incrementado sequencialmente</td>
</tr>
<tr>
<td>R</td>
<td>Nome</td>
<td>Char(50)</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Professor</td>
<td>Char(10)</td>
<td>Código do professor que ministra a disciplina</td>
</tr>
<tr>
<td>R</td>
<td>Comentarios</td>
<td>Text</td>
<td>Campo grande para abrigar diversos comentários do professor que aparecerão na página inicial da disciplina, inclusive podendo ter a ementa.</td>
</tr>
<tr>
<td></td>
<td>Link www</td>
<td>Char(50)</td>
<td>Caso existam maiores explicações ou conteúdo da disciplina.</td>
</tr>
</tbody>
</table>

INSTITUIÇÃO

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Comentários</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Nome</td>
<td>Char(60)</td>
<td>Nome da Instituição</td>
</tr>
<tr>
<td>R</td>
<td>Endereço</td>
<td>Char(40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complemento</td>
<td>Char(15)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Bairro</td>
<td>Char(30)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Cidade</td>
<td>Char(25)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Estado</td>
<td>Char(2)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>CEP</td>
<td>Char(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telefone</td>
<td>Char(15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://</td>
<td>Char(50)</td>
<td></td>
</tr>
</tbody>
</table>
PROFESSOR

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Comentários</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Nome</td>
<td>Char(50)</td>
<td></td>
</tr>
<tr>
<td>Login</td>
<td>Char(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DataNasc</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Senha</td>
<td>Char(6)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Endereço</td>
<td>Char(40)</td>
<td></td>
</tr>
<tr>
<td>Complemento</td>
<td>Char(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Bairro</td>
<td>Char(30)</td>
<td></td>
</tr>
<tr>
<td>Cidade</td>
<td>Char(25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Estado</td>
<td>Char(2)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>CEP</td>
<td>Char(10)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Telefone</td>
<td>Char(20)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>e-mail</td>
<td>Char(40)</td>
<td></td>
</tr>
<tr>
<td>http</td>
<td>Char(50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Instituição</td>
<td>Char(60)</td>
<td>Nome da Instituição do professor</td>
</tr>
</tbody>
</table>

QUESTÃO

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Código</td>
<td>Int(4)</td>
<td>Nível de dificuldade atribuído pelo professor</td>
</tr>
<tr>
<td>R</td>
<td>difprof</td>
<td>Int(1)</td>
<td>Campo válido somente para Auto-avaliações, com o objetivo de mostrar a resposta correta juntamente com explicações do professor.</td>
</tr>
<tr>
<td></td>
<td>Autoaval</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>difsist</td>
<td>Int(1)</td>
<td>Nível de dificuldade, atribuído pelo sistema de acordo com o número de alunos que erraram a questão.</td>
</tr>
<tr>
<td>Tipo</td>
<td>int(1)</td>
<td>Indica qual o tipo de questão, p. Ex. Múltipla escolha</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Tópico</td>
<td>Int(4)</td>
<td>Código do tópico que a questão abrange</td>
</tr>
<tr>
<td>*</td>
<td>Disciplina</td>
<td>Int(4)</td>
<td>Código da disciplina relativa à questão</td>
</tr>
<tr>
<td></td>
<td>Enunciado</td>
<td>Text</td>
<td>Enunciado da questão</td>
</tr>
<tr>
<td></td>
<td>Imagem</td>
<td>Char(50)</td>
<td>Nome do arquivo .gif ou .jpg que será apresentado acima do enunciado</td>
</tr>
<tr>
<td></td>
<td>Tempo</td>
<td>Int(2)</td>
<td>Tempo máximo em minutos para resposta do aluno. Válido somente em questões adaptativas, que são apresentadas uma a uma.</td>
</tr>
<tr>
<td></td>
<td>Pontos</td>
<td>Int(2)</td>
<td>Especifica quantos pontos vale a questão.</td>
</tr>
</tbody>
</table>

ALTERNATIVA

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Código</td>
<td>Int(4)</td>
<td>Código principal da tabela Múltipla Escolha.</td>
</tr>
<tr>
<td>*</td>
<td>Cod Multesc</td>
<td>Int(4)</td>
<td>Código principal da tabela Múltipla Escolha.</td>
</tr>
<tr>
<td>R</td>
<td>Alternativa</td>
<td>Varchar(40)</td>
<td>Texto que será apresentado ao aluno.</td>
</tr>
<tr>
<td></td>
<td>Certo</td>
<td>Booleano</td>
<td>Informa se esta é a alternativa correta</td>
</tr>
</tbody>
</table>

ORDENACAO

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Código</td>
<td>Int(4)</td>
<td>Herda o código da questão, já que se trata de uma especialização.</td>
</tr>
</tbody>
</table>

ITEM

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Código</td>
<td>Int(4)</td>
<td>Código principal da tabela Ordenacao.</td>
</tr>
<tr>
<td>*</td>
<td>Cod Ordena</td>
<td>Int(4)</td>
<td>Código principal da tabela Ordenacao.</td>
</tr>
<tr>
<td>R</td>
<td>Alternativa</td>
<td>Varchar(40)</td>
<td>Texto que será apresentado ao aluno.</td>
</tr>
<tr>
<td></td>
<td>Ordem</td>
<td>Int(1)</td>
<td>Informa a ordem da alternativa</td>
</tr>
</tbody>
</table>
PALAVRAS CRUZADAS

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Código</td>
<td>Int(4)</td>
<td>Herda o código da questão.</td>
</tr>
<tr>
<td></td>
<td>Pergunta</td>
<td>Char(30)</td>
<td>Pergunta da questão que deverá ser preenchida pelo aluno. (P. ex.: Qual é o nome dado a computadores portáteis)</td>
</tr>
<tr>
<td></td>
<td>Resposta</td>
<td>Char(15)</td>
<td>Resposta da questão que será preenchida pelo aluno. (P. Ex. Notebook).</td>
</tr>
</tbody>
</table>

COMPLETAR LACUNAS

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Código</td>
<td>Int(4)</td>
<td>Herda o código da questão.</td>
</tr>
<tr>
<td></td>
<td>Lacuna_1</td>
<td>Char(15)</td>
<td>Resposta da primeira lacuna da questão.</td>
</tr>
<tr>
<td></td>
<td>Lacuna_2</td>
<td>Char(15)</td>
<td>Resposta da segunda lacuna da questão.</td>
</tr>
</tbody>
</table>

VERDADEIRO / FALSO

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Código</td>
<td>Int(4)</td>
<td>Herda o código da questão.</td>
</tr>
<tr>
<td></td>
<td>Pergunta</td>
<td>Char(50)</td>
<td>Pergunta que será apresentada ao aluno.</td>
</tr>
<tr>
<td></td>
<td>V_ou_F</td>
<td>Booleano</td>
<td>Indica se a pergunta realizada é verdadeira ou falsa;</td>
</tr>
</tbody>
</table>

RELACIONAR

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Código</td>
<td>Int(4)</td>
<td>Herda o código da questão.</td>
</tr>
<tr>
<td></td>
<td>Coluna_1</td>
<td>Char(50)</td>
<td>Coluna que deverá ser relacionada pelo aluno com a Coluna_2.</td>
</tr>
<tr>
<td></td>
<td>Coluna_2</td>
<td>Char(50)</td>
<td>Coluna que deverá ser relacionada pelo aluno com a Coluna_1.</td>
</tr>
</tbody>
</table>

TÓPICOS

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Código</td>
<td>Int(4)</td>
<td>Incremento automático</td>
</tr>
<tr>
<td>*</td>
<td>disciplina</td>
<td>Int(4)</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Descricao</td>
<td>Char(50)</td>
<td>Descrição do tópico da disciplina.</td>
</tr>
</tbody>
</table>

TURMA

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Código</td>
<td>Int(4)</td>
<td>Incremento automático</td>
</tr>
<tr>
<td>R</td>
<td>Nome</td>
<td>Char(50)</td>
<td>Pode ser descritivo ou numérico. Ex.: “Pedagogia 1”, ou “221”</td>
</tr>
<tr>
<td>*</td>
<td>Professor</td>
<td>Varchar(10)</td>
<td></td>
</tr>
</tbody>
</table>

MATRICULA

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Aluno</td>
<td>Char(10)</td>
<td>Código do Aluno – chave composta</td>
</tr>
<tr>
<td>#</td>
<td>Disciplina</td>
<td>Int(4)</td>
<td>Código da Disciplina – chave composta</td>
</tr>
<tr>
<td></td>
<td>Data</td>
<td>Date</td>
<td>Gravados automaticamente no momento da matrícula dos alunos.</td>
</tr>
<tr>
<td></td>
<td>Hora</td>
<td>Time</td>
<td></td>
</tr>
</tbody>
</table>
PROVA

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Codigo</td>
<td>Int(6)</td>
<td>Incremento automático</td>
</tr>
<tr>
<td></td>
<td>Data_Aplic</td>
<td>Date</td>
<td>Período da disponibilização da avaliação. A partir destes dados serão</td>
</tr>
<tr>
<td></td>
<td>Hora_aplic</td>
<td>Time</td>
<td>disponibilizadas as avaliações para o aluno; caso não sejam</td>
</tr>
<tr>
<td></td>
<td>Data_final</td>
<td>Date</td>
<td>preenchidos, não haverá restrição quanto à data e horário de</td>
</tr>
<tr>
<td></td>
<td>Hora_final</td>
<td>Time</td>
<td>aplicação.</td>
</tr>
<tr>
<td></td>
<td>Descrição</td>
<td>Char(50)</td>
<td>Descrição da prova que será visível para o aluno</td>
</tr>
<tr>
<td>R</td>
<td>Questao</td>
<td>Int(2)</td>
<td>Número de questões apresentadas na prova</td>
</tr>
<tr>
<td></td>
<td>Disponivel</td>
<td>Int(1)</td>
<td>Identifica se a prova deverá estar disponível somente para os alunos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>daquela disciplina e daquele professor ou se deve ser colocada na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>área pública para que todos realizem o acesso às avaliações.</td>
</tr>
<tr>
<td>R</td>
<td>Pontos</td>
<td>Int(3)</td>
<td>Pontuação máxima que pode ser obtida pelo aluno. Serve também</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>para validar qual o valor de cada questão.</td>
</tr>
<tr>
<td>R</td>
<td>Adaptativa</td>
<td>Int(1)</td>
<td>Identifica se existirá um nível de dificuldade progressivamente mais</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fácil, mais difícil ou não utilizará adaptatividade.</td>
</tr>
<tr>
<td>R</td>
<td>Tentativas</td>
<td>Int(1)</td>
<td>Especifica o número de tentativas de respostas possíveis por questão</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>para os alunos.</td>
</tr>
<tr>
<td></td>
<td>Distribuicao</td>
<td>Booleano</td>
<td>Opção para modificar aleatoriamente a ordem de apresentação das</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>questões na prova, modificando-se para cada novo aluno que realiza a</td>
</tr>
<tr>
<td>R</td>
<td>Auto_aval</td>
<td>Booleano</td>
<td>Especifica se o tipo de prova é de auto-avaliação, pois o sistema</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>envia um feedback automático quando for este tipo de avaliação.</td>
</tr>
<tr>
<td>R</td>
<td>M_fácil</td>
<td>Int(2)</td>
<td>Percentual de questões deste tipo</td>
</tr>
<tr>
<td>R</td>
<td>Fácil</td>
<td>Int(2)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Médio</td>
<td>Int(2)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Difícil</td>
<td>Int(2)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Muito dificil</td>
<td>Int(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Questionário</td>
<td>Text</td>
<td>Endereço www que identifica o questionário que será disponibilizado</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ao final da avaliação para os estudantes. Caso esteja em branco</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>significa que não será apresentado questionário para o aluno</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>responder.</td>
</tr>
<tr>
<td></td>
<td>Objetivos</td>
<td>Text</td>
<td>Objetivos da avaliação definidos pelo professor. Serão apresentados</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>no início da avaliação para os alunos.</td>
</tr>
</tbody>
</table>

COMPÕE

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Tipo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Questao</td>
<td>Int(4)</td>
<td>Chave composta</td>
</tr>
<tr>
<td>#</td>
<td>Prova</td>
<td>Int(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor</td>
<td>Int(2)</td>
<td>Quanto vale esta questão nesta prova; é sugerido o valor padrão que</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>está armazenado juntamente com a questão. Através da soma deste campo nos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>registros relacionados à prova, é possível descobrir quantos pontos no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>total possui a avaliação.</td>
</tr>
<tr>
<td>*</td>
<td>Tipo</td>
<td>Int(1)</td>
<td>Identifica o tipo da questão, por exemplo, múltipla escolha</td>
</tr>
</tbody>
</table>
FAZ

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Aluno</td>
<td>Char(10)</td>
</tr>
<tr>
<td>#</td>
<td>Prova</td>
<td>Int(6)</td>
</tr>
<tr>
<td></td>
<td>Completa</td>
<td>Booleano</td>
</tr>
<tr>
<td></td>
<td>Nota</td>
<td>Int(2)</td>
</tr>
<tr>
<td></td>
<td>Upload</td>
<td>Char(20)</td>
</tr>
<tr>
<td></td>
<td>Data inicial</td>
<td>Date</td>
</tr>
<tr>
<td></td>
<td>Data final</td>
<td>Date</td>
</tr>
<tr>
<td></td>
<td>Hora inicial</td>
<td>Time</td>
</tr>
<tr>
<td></td>
<td>Hora final</td>
<td>Time</td>
</tr>
<tr>
<td></td>
<td>Comentário</td>
<td>text</td>
</tr>
</tbody>
</table>

Códigos, chaves estrangeiras e compostas para identificar a prova respondida pelo aluno.

Identifica se o aluno completou a avaliação. Considera-se a avaliação realizada quando o aluno clicar no botão “Enviar para o professor”.

Quantos pontos obteve este aluno por esta prova.

Dados sobre o arquivo enviado para o professor, caso exista. Estes dados incluem o nome do arquivo, número de bytes e horário de envio.

Contém dados sobre a data e quanto tempo o aluno demorou para finalizar a avaliação. Deve ser preenchido automaticamente pelo sistema.

Comentários do professor a respeito da prova em geral ou alguma(s) questão(ões) específica(s) respondida pelo aluno.

RESPONDE

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Nome</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Questão</td>
<td>Int(4)</td>
</tr>
<tr>
<td>#</td>
<td>Aluno</td>
<td>Char(10)</td>
</tr>
<tr>
<td></td>
<td>Comentário al</td>
<td>Text</td>
</tr>
<tr>
<td></td>
<td>Acerto</td>
<td>Booleano</td>
</tr>
<tr>
<td></td>
<td>Tempo</td>
<td>Time</td>
</tr>
<tr>
<td></td>
<td>Comentário_prof</td>
<td>Text</td>
</tr>
</tbody>
</table>

Códigos, chaves estrangeiras e compostas para identificar a questão respondida pelo aluno.

Comentários do aluno sobre determinada questão.

Informa se o aluno acertou a resposta da questão (s) ou não (n).

Tempo gasto pelo aluno para responder a questão. Este tempo somente é computado no caso de avaliações adaptativas, pois são apresentadas uma a uma.

Comentários do professor sobre determinada questão. Estes comentários estarão disponíveis para o aluno após ele verificar os resultados de avaliações anteriores.
Bibliografia

