COMPARAÇÃO ENTRE A VELOCIDADE NO LIMIAR ANAERÓBICO E AS VELOCIDADES CRÍTICAS NA CORRIDA EM PISCINA FUNDA
COMPARAÇÃO ENTRE A VELOCIDADE NO LIMIAR ANAERÓBICO E AS VELOCIDADES CRÍTICAS NA CORRIDA EM PISCINA FUNDA

Trabalho de Conclusão de Curso apresentado como requisito parcial para obtenção do título de licenciado em Educação Física, pelo curso de Educação Física da Universidade Federal do Rio Grande do Sul.

Orientador: Luiz Fernando Martins Kruehl
Co-Orientador: Marcus Peikriszwili Tartaruga

Porto Alegre
2010
RESUMO

COMPARAÇÃO ENTRE A VELOCIDADE NO LIMIAR ANAERÓBICO E AS VELOCIDADES CRÍTICAS NA CORRIDA EM PISCINA FUNDA

Autora: Fabiana Fernandes Vaz
Orientador: Luiz Fernando Martins Kruel
Co-Orientador: Marcus Peikriszwili Tartaruga

O objetivo do estudo foi comparar a velocidade no limiar anaeróbio (VLA) com as velocidades críticas (VCs) na corrida em piscina funda (CPF). Participaram do estudo 11 mulheres (55,7 ± 4,5 anos), com experiência mínima de dois anos na modalidade. Para a determinação das VCs, as amostras realizaram quatro testes no máximo esforço nas distâncias de 25; 37,5; 50; 62,5m, que resultaram nas seguintes combinações: VC1 (25; 37,5; 50m), VC2(25; 50; 62,5m), VC3 (37,5; 50; 62,5m), VC4 (25; 37,5; 62,5m) e VC5 (25; 37,5; 50; 62,5m). As VCs foram determinadas pelo coeficiente angular da reta distância vs tempo. Para a determinação da VLA, foi aplicado o protocolo de lactato mínimo, do qual foi obtido a velocidade no limiar de lactato (VLL). O protocolo consistiu de um teste de esforço máximo na distância de 25m em cinco testes submáximos em intensidades correspondentes a 50%, 60%, 70%, 80% e 90% do máximo desempenho. O lactato foi coletado no 1º, 3º e 5º minuto após o máximo esforço e 1 minuto após cada intensidade submáxima. Utilizou-se o teste de Shapiro-Wilk para verificar a normalidade das variáveis, análise de variância (ANOVA) de medidas repetidas, com teste post-hoc de Bonferroni, para comparação das VCs com a VLL, e correlação Linear Produto-Momento de Pearson para verificar a relação, sem causa-efeito, entre as VCs e a VLL. Para todos os testes adotou-se um $\alpha=0,05$ (SPSS v.18.0). Não foram encontradas diferenças significativas entre as cinco VCs e a VLL. Foram encontradas correlações fortes, todas significativas entre a VLL as VCs VC1 ($r=0,956; p<0,001$), VC2 ($r=0,848; p=0,001$), VC3 ($r=0,738; p=0,010$), VC4 ($r=0,780, p=0,005$) e VC5 ($r=0,861; p=0,001$). Os resultados demonstram que a VC pode ser utilizada como um método indireto para identificar a VLA na CPF em mulheres com características semelhantes as do presente estudo. Como aplicação prática, sugere-se a utilização da VC (método indireto e de baixo custo financeiro) para identificação da VLA e, consequentemente, para prescrição de treino na CPF.

PALAVRAS CHAVES: corrida em piscina funda, velocidade crítica, lactato, limiar anaeróbio.
The purpose of this study was to compare the anaerobic threshold velocity (ATV) with critical velocities (CVs) in the deep water running (DWR). Eleven women (55.7 ± 4.5 years), with at least 12 years of DWR practice, were volunteered for this study. To determine the CVs, subjects performed 4 maximal effort tests in the distances of 25; 37.5; 50; 62.5m, which resulted in the following combinations: CV1 (25; 37.5; 50m), CV2 (25; 50; 62.5m), CV3 (37.5; 50; 62.5m), CV4 (25; 37.5; 62.5m) and CV5 (25; 37.5; 50; 62.5m). The CVs were determined by the angular coefficient of time vs. distance line. To determine ATV, the minimal lactate protocol was applied, in which the lactate threshold velocity (LTV) was obtained. The protocol consisted in a maximal effort test in the distance of 25m and 5 submaximal tests at intensities corresponding to 50%, 60%, 70%, 80% and 90% of maximal performance. Lactate was collected in the 1st, 3rd and 5th minute after the maximal effort and 1 minute after each submaximal intensity. Shapiro-Wilk test was used for determining the normality of variables. To compare CVs with LTV, repeated-measures analysis of variance with Bonferroni post-hoc tests were used. To verify the relationship without cause and effect of CVs and LTV, Pearson Product Moment Correlation Test was used. To all tests, the level of statistical significance adopted was α=0.05 (SPSS v.18.0). There were no significant differences between the 5 CVs and the LTV. There were significant strong correlations between LTV and CVs: CV1 (r=0.956; p<0.001), CV2 (r=0.848; p=0.001), CV3 (r=0.738; p=0.010), CV4 (r=0.780, p=0.005) and CV5 (r=0.861; p=0.001). The results demonstrated that the CV might be used as an indirect method to identify the ATV during the DWR in women similar to participants of the present study. As practical application, it suggests the utilization of CV (indirect and low cost method) to identify the ATV and consequently, to training prescription in the DWR.

KEY-WORDS: deep water running, critical velocity, lactate, anaerobic threshold
SÚMARIO

1. INTRODUÇÃO ... 9
 1.1. OBJETIVO GERAL .. 11
 1.2. OBJETIVOS ESPECÍFICOS ... 11

2. REVISÃO DE LITERATURA .. 12
 2.1. PARÂMETROS FISIOLÓGICOS ... 12
 2.1.1. Limiar Anaeróbico .. 12
 2.2. VELOCIDADE CRÍTICA ... 14

3. ABORDAGEM METODOLÓGICA ... 18
 3.1. AMOSTRA .. 18
 3.1.1. Cálculo Amostral ... 18
 3.1.2. Critério de Inclusão ... 19
 3.1.3. Critério de Exclusão .. 19
 3.1.4. Procedimento para Seleção da Amostra .. 19
 3.1.5. Termo de Consentimento Livre e Esclarecido .. 19
 3.2. VARIÁVEIS ... 20
 3.2.1. Variáveis Dependentes .. 20
 3.2.2. Variáveis Independentes ... 20
 3.2.3. Variáveis de Controle ... 20
 3.3. PROCEDIMENTOS PARA COLETA DOS DADOS 20
 3.3.1. Protocolo de avaliação ... 21
 3.3.1.1. Caracterização da Amostra (1ª Fase) ... 22
 3.3.1.2. Familiarização da Amostra (2ª Fase) .. 22
 3.3.1.3. Teste de Velocidade Crítica (3ª Fase) ... 23
 3.3.1.4. Teste do Lactato Mínimo (4ª Fase) ... 24
 3.4. INSTRUMENTOS DE MEDIDA .. 26
 3.4.1. Ficha de Coleta de Dados ... 26
 3.4.2. Protocolo de Dobras Cutâneas (anexo E) ... 26
 3.4.3. Questionário de Prontidão para Atividade Física - Q-PAF (anexo D) 26
 3.4.4. Balança .. 27
 3.4.5. Estadiômetro .. 27
 3.4.6. Cronômetro ... 27
 3.4.7. Lactímetro ... 27
 3.4.8. Termômetro ... 27
 3.4.9. Sensor de Batimentos Cardíacos ... 27
 3.5. ANÁLISE ESTATÍSTICA ... 28

4. RESULTADOS ... 29

5. DISCUSSÃO .. 31

6. CONCLUSÃO ... 33

7. REFERÊNCIAS ... 34

8. ANEXOS .. 38
LISTA DE FIGURAS

Figura 1 - Corrida em piscina funda com a utilização do colete flutuador... 21
Figura 2 - Fases dos procedimentos de coletas de dados do estudo: 1º fase corresponde à sessão de caracterização da amostra, leitura e assinatura do Termo de Consentimento (CARAC), à 2º fase as sessões de familiarização da amostra com o teste de lactato mínimo (FAM TESTE LM), à 3º fase aos testes de velocidade crítica (TESTE VC), a 4º fase ao teste de lactato mínimo (TESTE LM), e o número de dias de intervalos entre cada avaliação... 21
Figura 3 - Exemplo da realização do exercício de CPF com as mãos unidas a frente do corpo... 22
Figura 4 - Gráfico da distância em função do tempo de uma amostra do presente estudo utilizado para a determinação da VC através do coeficiente angular da reta.. 23
Figura 5 - Gráfico da concentração de lactato em função da velocidade de deslocamento de uma amostra do presente estudo. A seta (↑) indica a menor concentração de lactato sanguíneo durante o teste... 24
Figura 6 - Protocolo de lactato mínimo.. 25
Figura 7 - Ilustração do posicionamento dos cones, a cada 5 metros, na borda da piscina, para a monitorização da velocidade de deslocamento... 25
Figura 8 - Imagem do observador que monitorou a velocidade das amostras... 26
Figura 9 - Gráficos de correlação entre a VLL e as VCs de 11 mulheres praticantes de CPF... 30
LISTA DE TABELAS

Tabela 1	Valores médios e desvios-padrão (DP) da idade, estatura, massa corporal, percentual de gordura corporal, tempo de prática e VO\textsubscript{2max} indireto de 11 mulheres praticantes de corrida em piscina funda (CPF)	29
Tabela 2	Média e desvio-padrão (DP) das VCs determinadas a partir das combinações das distâncias de 25; 37,5; 50 e 62,5m e, da VLL de 11 mulheres praticantes de CPF	29
Tabela 3	Correlação entre as VCs e a VLL de 11 mulheres praticantes de CPF	29
LISTA DE ANEXOS

<table>
<thead>
<tr>
<th>ANEXO A</th>
<th>Ficha de anamnese</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANEXO B</td>
<td>Termo de Consentimento Livre Esclarecido</td>
<td>40</td>
</tr>
<tr>
<td>ANEXO C</td>
<td>Ficha de coletas de dados</td>
<td>42</td>
</tr>
<tr>
<td>ANEXO D</td>
<td>Questionário de Prontidão Para Atividade Física - Q-PAF</td>
<td>43</td>
</tr>
<tr>
<td>ANEXO E</td>
<td>Procedimentos e fórmulas para composição corporal</td>
<td>45</td>
</tr>
<tr>
<td>ANEXO F</td>
<td>Resultado das VCs VC1, VC2, VC3, VC4, VC5 e VLL do grupo amostral</td>
<td>46</td>
</tr>
</tbody>
</table>
1. INTRODUÇÃO

A corrida em piscina funda (CPF) consiste em uma corrida simulada na água sem o contato dos pés com o solo, mantendo a cabeça fora da água, podendo ser realizada com ou sem o uso de flutuadores, eliminando assim, o impacto (WILDER et al., 1993). A mesma pode ser utilizada, para atletas de meio fundo e fundo, como complemento do treinamento da corrida em terra (em até 30 por cento), diminuindo os riscos de lesões resultantes do volume de treino (TARTARUGA, 2003).

Em atividades predominantemente aeróbicas, como por exemplo, a CPF, um dos parâmetros utilizado como indicador da capacidade de desempenho físico e prescrição do treinamento é o limiar anaeróbico (LA) (SVEDAHL e MACINTOSH, 2003). Existem evidências de que o desempenho em atividades esportivas contínuas e prolongadas se correlacionam melhor com o LA do que com a potência aeróbica máxima (VO₂max) (RIBEIRO, 1995; SVEDAHL e MACINTOSH, 2003).

O limiar anaeróbico (LA) corresponde à intensidade máxima de exercício em que se verifica um desequilíbrio entre a produção e remoção do lactato (COYLE, 1995; HOLLMANN, 2001). Ele pode ser determinado através de métodos diretos como, por exemplo, o protocolo de lactato mínimo, no qual é possível identificar o limiar de lactato (LL) através de análises sanguíneas. Segundo Wilmore & Costil (2001), o LL corresponde ao ponto no qual o lactato sérico começa a se acumular além da concentração de repouso durante o exercício de intensidade crescente, e é representado pela curva de lactato vs tempo ou pela curva de lactato vs potência. O LL pode ser determinado através de vários métodos, como por exemplo, o Ponto de Deflexão, a Distância Máxima (Dmáx), o Ponto de Concentração de Lactato de 4 mMol, a Máxima Fase Estável de Lactato Sanguíneo e o Lactato Mínimo (LM) (HECK et al., 1985, TEGTBUR et al., 1993, BENEKE; HUTLER et al., 2000, NILCHOLSON e SLEIVERT, 2001).

O método de Lactato Mínimo (LM) consiste de um teste em intensidade máxima procedido de testes em intensidades submáximas que vão aumentando a intensidade, chegando próximo da intensidade máxima. Durante os estágios iniciais deste teste, a remoção de lactato é superior à sua produção e o lactato diminui até um momento a partir do qual a produção passa a superar a remoção do mesmo, que começa a se acumular novamente (TEGBUR et al., 1993). Esse método foi...
validado por Tegtbur et al., (1993) que relataram a possibilidade de estimar o LA através da intensidade correspondente à menor concentração de lactato obtida em um teste incremental após indução da hiperlactacidemia.

A determinação deste limiar através da medição do lactato sanguíneo é um procedimento que envolve uma abordagem invasiva e com alto custo. Deste modo, alguns estudos têm procurado validar outros índices que possam ser utilizados na avaliação e prescrição aeróbica, sem que haja a necessidade de uma abordagem invasiva, reduzindo, principalmente, os custos financeiros.

Um método que apresenta muitas vantagens e facilidade de aplicação é a potência crítica (PC) ou a velocidade crítica (VC). Este surgiu como alternativa para determinação da velocidade correspondente ao LA (BUNIOTO, 2005). A base para o conceito de PC provém da existência de uma relação hiperbólica entre carga de trabalho e o tempo que cada carga é sustentada (HILL, 1993). De acordo com Wakayoshi et al., (1992a), a VC corresponde a mais alta intensidade de exercício que teoricamente pode ser mantida por um longo período de tempo sem exaustão, resultante da relação entre distância vs tempo. Este método apresenta muitas vantagens como a facilidade de aplicação durante as sessões de treino, o que permite a análise de grande número de atletas, e um baixo custo financeiro (WAKAYOSHI et al., 1992a; WAKAYOSHI et al., 1992b).

A VC já foi estudada em modalidades como a natação (WAKAYOSHI et al., 1992b; WAKAYOSHI et al., 1993; KOKUBUN, 1996; GREGO et al., 2003; PAPOTI et al., 2005; TOUBEKIS et al., 2006; e MACHADO et al., 2009) a corrida (SID-ALI et al., 1991; HILL & FERGUNSON 1999; DENADAÍ et al., 2003; SILVA, et al., 2005), o ciclismo (HIYANE et al., 2006) a canoagem (FONTES et al., 2002; TARTARUGA et al., 2009) e a CPF (NAKAMURA et al., 2005; SILVA et al., 2006). Especificamente, em relação a CPF, Nakamura et al., 2005 compararam a VC com o limiar de esforço percebido (LEP), e os resultados encontrados sugerem que o esforço percebido pode ser utilizado como um método de predição da VC. Já o estudo de Silva et al., (2006), comparando a velocidade crítica com a velocidade no limiar anaeróbico (VLA), não evidenciou diferenças significativas entre esses dois métodos. No entanto, ao aplicarem a técnica de Bland-Altman, resultados antagônicos foram obtidos, o que segundo os autores, o método adotado para a predição da VLA pode superestimar ou subestimar os resultados.
O estudo (SILVA et al., 2006) na literatura a respeito da relação entre o LA e a VC na CPF, sugere cautela na utilização da VC como um índice de avaliação e prescrição de treinamento. Devido à importância da VC na prescrição de treinamento e na facilidade na sua aplicação, mais estudos devem ser realizados a respeito. Além disso, não foram encontrados estudos investigando a relação entre a VC e a velocidade no limiar de lactato (VLL), ou VLA, em mulheres praticantes de CPF.

Desta forma, surge o seguinte problema da pesquisa: “existe relação significativa entre a velocidade no limiar anaeróbico e as velocidades críticas na corrida em piscina funda?”

1.1. OBJETIVO GERAL

Comparar a velocidade no limiar anaeróbico (LA) com as velocidades críticas na corrida em piscina funda.

1.2. OBJETIVOS ESPECÍFICOS

- Determinar a velocidade no limiar de lactato (VLL) na corrida em piscina funda;
- Determinar as velocidades críticas nas combinações VC1 (25; 37,5; 50m), VC2(25; 50; 62,5m), VC3 (37,5; 50; 62,5m), VC4 (25; 37,5; 62,5m) e VC5 (25; 37,5; 50; 62,5m) na corrida em piscina funda;
- Comparar as velocidades críticas com a velocidade no limiar de lactato.
- Relacionar as velocidades críticas com a velocidade no limiar de lactato.
2. REVISÃO DE LITERATURA

2.1. PARÂMETROS FISIOLÓGICOS

Um dos principais parâmetros fisiológicos para a caracterização ou a comparação da condição aeróbica de um grupo de indivíduos é o LA (SANTOS). De fato, o desempenho de longa duração é determinado tanto pela potência como pela capacidade dos sistemas de produção de energia. Enquanto a potência máxima aeróbica, expressa pelo VO\textsubscript{2max}, se refere à quantidade máxima de energia que pode ser transformada oxidativamente nas fibras musculares ativas por unidade de tempo, a capacidade aeróbica, expressa pelo LA, reporta-se à energia disponível para o trabalho aeróbico e reflete a capacidade de manter uma determinada intensidade submáxima durante um período prolongado, com uma baixa concentração sanguínea de lactato (SANTOS).

2.1.1. Limiar Anaeróbico

O método da Distância máxima (D\textsubscript{máx}), inicialmente proposto por Cheng \textit{et al.}, (1992) e posteriormente utilizado por Nilcholson e Sleivert (2001), é uma proposta metodológica onde os valores de lactato sanguíneo, ventilação, frequência respiratória e produção de CO\textsubscript{2} (VCO\textsubscript{2}) são coletados durante um teste incremental em ciclo ergômetro, e são plotados aos valores de VO\textsubscript{2}, constituindo-se uma linha de tendência exponencial de terceira ordem. Esta curva demonstra o comportamento das respostas fisiológicas frente ao exercício realizado e apresenta um comportamento crescente em função do aumento da intensidade. Posteriormente,
uma reta unindo o ponto inicial e final da curva é confeccionada e a maior distância entre a curva e a reta constituída é considerada o limiar de lactato, por isso o nome de Dmáx (BATISTA et al., 2005)

Um outro método de determinação do LL é o método da máxima fase estável de lactato sanguíneo (MLACSS). A intensidade de exercício correspondente à (MLACSS) pode ser definida como a máxima intensidade de exercício de carga constante, onde se observa equilíbrio entre a taxa de liberação e remoção do lactato sanguíneo (BENEKE, 2000). A identificação do LL através do método da MLACSS apresenta em princípio uma desvantagem, pois exige a realização de 4-6 séries de exercício de carga constante, com aproximadamente 30 min de duração, obrigando que atletas tenham que ir ao laboratório, por vários dias (DENADAI et al., 2003). Para retirar esta desvantagem, Heck et al. (1985) propuseram a identificação da MLACSS com base em um único protocolo de carga progressiva, empregando uma concentração fixa de 4mMol.

Embora alguns estudos tenham confirmado que o método realizado através do Ponto de Concentração de Lactato de 4 mMol corresponde a MLACSS, foi verificado uma variabilidade individual relativamente grande nestas concentrações (JONES & DOUST, 1998, SIMÕES et al. 1999). Além disso, outros estudos encontraram que este critério está sujeito à influência de substratos (MAASSEN & BUSSE, 1989) e também ao tipo de exercício (BENEKE & VON DUVillard, 1996).

Já o método de determinação do LL através do teste de lactato mínimo (LM), de acordo com os autores que o propuseram (TEGTBUR et al., 1993), identificaria a intensidade de exercício na qual o máximo equilíbrio entre a taxa de liberação e remoção de lactato no sangue, (MLACSS) pode ser observada. No estudo de Tegtbur et al., (1993) os autores relataram a possibilidade de estimar o LA através da intensidade correspondente à menor concentração de lactato obtida em um teste incremental após indução da hiperlactacidemia. Neste estudo os autores verificaram que a corrida realizada na intensidade do lactato mínimo, podia ser sustentada por 8 Km sem acúmulo de lactato sanguíneo, enquanto a corrida com apenas 0,7 Km/h acima desta intensidade, resultava em um significante aumento do lactato, determinando que alguns sujeitos não completassem os 8 Km. também verificaram que a velocidade de corrida no lactato mínimo não é dependente da disponibilidade de substratos (glicogênio muscular) e da concentração sanguínea de lactato antes do exercício incremental.
Portanto, uma vez determinado o LL, consequentemente o LA, torna-se possível encontrar faixas de intensidade para o treinamento e verificação do desempenho. No entanto, sabe-se que para determinar o LA através da medição do lactato sanguíneo é um procedimento que envolve uma abordagem invasiva e com alto custo. Deste modo, alguns estudos têm procurado validar outros índices que possam ser utilizados na avaliação e prescrição aeróbica, sem envolver uma abordagem invasiva e custos financeiros elevados.

2.2. VELOCIDADE CRÍTICA

A velocidade crítica (VC) é definida como a mais alta intensidade de exercício que teoricamente pode ser mantida por um longo período de tempo sem exaustão, resultante da relação entre distância vs tempo (WAKAYOSHI, et al., 1992b). A VC é originada da potência crítica (PC), proposta por Monod e Scherrer, (1965), e validada por Moritani et al. (1981), no qual a PC teoricamente representa a carga de trabalho que pode ser mantida por um longo período de tempo sem fadiga. A base para o conceito de PC provém da existência de uma relação hiperbólica entre carga de trabalho e o tempo que cada carga é sustentada (HILL, 1993).

Wakayoshi et al. (1992a), utilizando-se do conceito de linearidade da potência crítica, verificaram que a VC pode ser utilizada para estimar a performance de nadadores competitivos. Para a determinação VC e da capacidade de nado anaeróbio (CTA), os nadadores foram submetidos a seis esforços até a exaustão no swimming flume. Os seis pontos obtidos da relação entre o tempo limite e a velocidade do nado foram submetidos à regressão linear, sendo que o coeficiente angular representou a VC. Os autores observaram elevada correlação da VC com o LL para concentração de 4mMol (p<0,01), com limiar ventilatório (p<0,05) e com a velocidade máxima nos 400 m (p<0,01).

Em outro estudo, Wakayoshi et al. (1993), utilizando os mesmos procedimentos matemáticos citados anteriormente, mas com distâncias pré-determinadas (200 e 400m), e assumindo que a relação entre a velocidade de nado e o tempo de esforço são lineares, verificaram que a VC correspondeu a máxima fase estável de lactato. Dessa forma, sugerem a utilização da VC como variável de desempenho físico.

Dentre os estudos mencionados, o estudo de Grego *et al*., (2003) realizado na natação, comparou a velocidade crítica determinada na combinação de diferentes distâncias com o LA. Participaram deste estudo 31 nadadores divididos em dois grupos com idades entre 10-12 e 13-15 anos. A VC foi determinada a partir de combinações nas seguintes distâncias 25, 50, 100, 200, e 400 metros, em máximo *performance* na piscina. As combinações de VC foram calculadas através do coeficiente angular da reta de regressão linear entre as distâncias e seus respectivos tempos. Com esse estudo os autores puderam concluir que a distância utilizada na determinação da VC pode interferir no valor obtido, independente da idade cronológica. A VC determinada com distâncias entre 50 e 400 metros pode ser utilizada na avaliação da capacidade aeróbica de crianças e adolescentes.

O estudo de Papoti *et al*., (2005) também realizado na natação comparou a VC com a o LA. Participaram deste estudo 8 nadadores de nível nacional. A VC foi determinada através de testes máximos de 200 e 400 metros. A VC não foi significativamente diferente (*p*<0,05) do LA. Desse modo, os autores, poderam concluir que a VC é um padrão confiável na avaliação da capacidade aeróbica. Em outro estudo, a VC na natação parece coincidir com a velocidade no LA, definido como a velocidade de nado correspondente a uma concentração de 4mMol de sangue. Apresentando uma correlação (*r*=0,86) entre a VC e a velocidade no LA (KOKUBUN 1996).

Já o estudo de Denadaí *et al*., (2003), analisou a validade da VC para estimar o LA, antes e depois de um treinamento em corredores de endurance. Para a determinação da VC foram utilizadas as distâncias de 1500 e 5000 metros. Os testes em máximo esforço na corrida foram realizados antes e após quatro semanas de treinamentos. Não houveram diferenças significativas, antes do treinamento entre a VC e o LA, já após o treinamento o LA foi maior que a VC. Com isso, os autores concluíram que a validade da VC para estimar o LA pode depender do período e/ou tipo de treinamento realizado por atletas de *endurance*.
Um outro estudo realizado na corrida foi o de Silva et al., (2005), do qual, participaram 11 indivíduos fisicamente ativos não atletas. O objetivo foi comparar e estabelecer relações entre o limiar anaeróbio individual, o limiar glicêmico individual, a velocidade associada ao VO\textsubscript{2max}, a velocidade média em corrida de 3.000 metros e a VC. A velocidade crítica foi determinada pela regressão linear a partir dos testes de 3Km e 500m. Apesar da alta correlação entre as variáveis estudadas, a VC superestimou o limiar anaeróbio individual, e o limiar glicêmico individual (p<0,001). Concluíram então, que a VC identificada em pista pode ser útil para avaliar a aptidão aeróbica e identificar domínios de intensidade, mas não como referencia de LA.

No estudo de Fontes et al., (2002), foi verificado a aplicabilidade dos pressupostos do modelo da VC na canoagem na tentativa de estimar indiretamente a velocidade da máxima fase estável de lactato sanguíneo. O estudo foi realizado com oito canoístas do sexo masculino, através da realização de testes máximos nas distâncias de 750, 1000 e 1500m, e a determinação da velocidade na máxima fase estável de lactato sanguíneo utilizando velocidades correspondentes a 98 100 e 102%. Foi verificada uma tendência de equilíbrio dinâmico do lactato sanguíneo quando a 98% da VC, demonstrando uma aproximação da VC com a máxima fase estável de lactato sanguíneo.

Um outro estudo com canoagem de Tartaruga et al., (2009), teve como objetivo comparar e relacionar a VC com a velocidade no limiar do lactato mínimo. A VC foi determinada nas combinações das distâncias de 200, 500 e 1000 metros e verificaram que a VC em canoístas de velocidade, na combinação de 200/500 m pode ser utilizado na prescrição da velocidade no LA, podendo ser considerada como um índice de avaliação e prescrição de treinamento.

No estudo de Machado et al., (2009) os autores verificaram a influência de utilizar diferentes combinações de distâncias sobre os valores da Velocidade Crítica (VC) e Capacidade de Trabalho Anaeróbio (CTAn). Participaram deste estudo dezenove nadadores (16,22 ± 3,21 anos). A VC foi determinada através do coeficiente angular da reta de regressão linear entre a distância e o tempo obtido em cada repetição. Para a determinação da VC, foram utilizadas cinco distâncias (50, 100, 200, 400 e 800m) nas seguintes combinações: VC1 (50, 100 e 200m), VC2 (100, 200 e 400m), VC3 (200, 400 e 800m) e VC4 (50, 100, 200, 400 e 800m). Os autores concluíram que as distâncias escolhidas para os testes máximos possuem grande influência.
sobre os valores da VC, podendo superestimar ou subestimar a velocidade correspondente à máxima fase estável do lactato.

Dentre os estudos realizados com corrida em piscina funda que avaliaram a velocidade crítica, pode-se citar o estudo de Nakamura et al., (2005), que compararam a VC, obtida na corrida aquática, com o limiar de esforço percebido (LEP). Os resultados não apresentaram diferenças significativas, e apresentaram correlações altas ($r = 0,85$ e $0,88$). Desta forma os resultados sugerem que o esforço percebido pode ser utilizado na determinação da VC. No entanto, este estudo utilizou para a avaliação dois métodos indiretos. Já o estudo de Silva et al., (2006), também realizado com corrida em piscina funda, utilizou método direto e indireto para a avaliação, e comparou a velocidade crítica com o LA, sendo que a amostra era composta por 10 sujeitos de ambos os sexos, sem experiência na modalidade. Os resultados não evidenciaram diferenças significativas entre esses dois métodos, mas ao aplicarem a técnica de Bland-Altman resultados antagônicos foram obtidos, o que segundo os autores sugerem cautela na utilização da velocidade crítica como um indicador do LA.

O método de determinação do LL através do método da VC apresenta muitas vantagens como a facilidade de aplicação, permite a análise de grande número de atletas, a possibilidade que as avaliações aconteçam nas sessões de treino, envolvendo um baixo custo operacional e não envolvendo variáveis bioquímicas (WAKAYOSHI, et al., 1992a; WAKAYOSHI, et al., 1992b). No entanto poucos são os estudos relacionados com a VC realizados na CPF.

Além de existir poucos estudos na literatura a respeito da correlação entre o LA e a VC na corrida em piscina funda, o existente sugere cautela na utilização da VC como um índice de avaliação e prescrição de treinamento. Devido a sua importância, mais estudos devem ser realizados a respeito, para esclarecer se a VC realmente possui correlação com a VLA ou se é necessário identificar o método mais adequado para sua determinação.
3. ABORDAGEM METODOLÓGICA

3.1. AMOSTRA

A amostra foi composta por 11 mulheres voluntárias com experiência mínima de 12 meses em CPF. Os dados de caracterização da amostra são apresentados na Tabela 1.

3.1.1. Cálculo Amostral

Para o presente estudo, o “n” amostral foi calculado com base nos estudos de Tartaruga et al. (2009) que compararam a VC com a VLA de 7 canoístas de velocidade, e Silva et al., (2006), que compararam VC com a VLA de 10 indivíduos em CPF. Optou-se por esses estudos para a realização do cálculo amostral devido à semelhança dos mesmos com os aspectos da abordagem metodológica que foi utilizada nesse trabalho.

No estudo de Tartaruga et al. (2009), o cálculo amostral foi realizado através do Software PEPI versão 4.0, onde foram adotados um nível de significância de 0,05 e um poder de 90%. Com base nos desvios-padrão de 0,24 na velocidade crítica e 0,36 na VLL, e a diferença do desvio padrão entre as médias de 0,6 m.s\(^{-1}\), os cálculos realizados demonstraram a necessidade de um “n” de 7 indivíduos para as análises da velocidade crítica e velocidade no limiar de lactato, respectivamente.

No estudo de Silva et al (2006), o cálculo amostral foi realizado através do Software PEPI versão 4.0, onde foram adotados um nível de significância de 0,05 e um poder de 90%. Com base nos desvios-padrão de 0,021 na velocidade crítica e 0,051 na VLL, e a diferença do desvio padrão entre as médias de 0,072 m.s\(^{-1}\), os cálculos realizados demonstraram a necessidade de um “n” de 8 indivíduos para as análises da VC e VLL.

Com base nos desvios-padrão e nas diferenças entre as médias obtidas nos estudos citados anteriormente, decidiu-se adotar um número amostral (n) de 8 indivíduos.
3.1.2. Critério de Inclusão

Foram selecionadas mulheres, com idade entre 50 a 60 anos, com tempo mínimo de 12 meses de ambientação a prática em CPF, sem alterações no eletrocardiograma de esforço, que apresentassem no eletrocardiograma de esforço um consumo de VO\(_{2\text{máx}}\) por medida indireta, acima de 24,0 ml.Kg\(^{-1}\).min\(^{-1}\), o qual representa uma capacidade funcional de razoável, isentas de problemas físicos e que não estavam utilizando medicação relacionada a problemas cardíacos, respiratórios, e osteo-articulares.

3.1.3. Critério de Exclusão

Não foram selecionadas mulheres com problemas cardíacos, respiratórios e osteo-articulares (esses problemas foram identificados através de uma ficha de anamnese preenchida pela amostra, anexo A).

3.1.4. Procedimento para Seleção da Amostra

A amostra foi selecionada de forma não aleatória, por voluntariedade através de projeto de extensão vinculado à Escola de Educação Física da Universidade Federal do Rio Grande do Sul. As voluntárias foram convidadas através de comunicação oral para participar desta pesquisa e compareceram em datas e horários pré-estabelecidos para as sessões de coleta de dados.

3.1.5. Termo de Consentimento Livre e Esclarecido

Todos os sujeitos leram e assinaram o Termo de Consentimento Livre e Esclarecido (Anexo B), no qual contavam todas as informações pertinentes ao estudo. O Termo de Consentimento Livre e Esclarecido e o projeto de pesquisa foram aprovados (2008154) pelo Comitê de Ética em Pesquisa da UFRGS.
3.2. VARIÁVEIS

3.2.1. Variáveis Dependentes

- Velocidade Crítica (VC) nas combinações VC1(25; 37,5; 50m), VC2(25; 50; 62,5m), VC3(37,5; 50; 62,5m), VC4(25; 37,5; 62,5m) e VC5 (25; 37,5; 50; 62,5m);
- Velocidade no Limiar de Lactato (VLL).

3.2.2. Variáveis Independentes

- Protocolo de medida para a determinação das velocidades críticas (VCs);
- Protocolo de medida para a determinação da velocidade no limiar anaeróbio (VLA);

3.2.3. Variáveis de Controle

- Temperatura da água mantida entre 30 e 31°C;
- Profundidade de imersão: mantida na linha dos ombros.

3.3. PROCEDIMENTOS PARA COLETA DOS DADOS

A coleta de dados foi realizada na piscina funda do Centro Natatório da Escola de Educação Física – EsEF, da Universidade Federal do Rio Grande do Sul – UFRGS. Os testes foram executados em uma piscina funda com dimensões de 16m de largura, 25m de comprimento e profundidade de 2m, com auxílio de um colete flutuador (figura 1). A temperatura da água foi mantida entre 30° e 31°C, que é a temperatura utilizada nas aulas de CPF desenvolvidas pelo Grupo de Pesquisa em Atividades Aquáticas e Terrestres no seu projeto de extensão, pois segundo alguns estudos (SHIMIZU et al., 1998; CHRISTIE et al., 1990) essa variação, corresponde a temperatura ideal para a realização de exercícios sendo considerada a temperatura termoneutra.
3.3.1. Protocolo de avaliação

O estudo foi composto por quatro fases, conforme os procedimentos de coleta de dados demonstrados na figura 2. Entre cada fase está indicado o número de dias de intervalos entre cada sessão.

- 1º fase – Corresponde à sessão de caracterização da amostra, leitura e assinatura do Termo de Consentimento e Esclarecido (CARAC),
- 2º fase – Corresponde às sessões de familiarização com teste de lactato mínimo (FAM TESTE LM),
- 3º fase – Testes de velocidade crítica (TESTE VC),
- 4º fase – Teste de lactato mínimo (TESTE LM),

Figura 2 - Fases dos procedimentos de coletas de dados do estudo: 1º fase corresponde à sessão de caracterização da amostra, leitura e assinatura do Termo de Consentimento (CARAC), à 2º fase as sessões de familiarização da amostra com o teste de lactato mínimo (FAM TESTE LM), à 3º fase aos testes de velocidade crítica (TESTE VC), a 4º fase ao teste de lactato mínimo (TESTE LM), e o número de dias de intervalos entre cada avaliação;
3.3.1.1. Caracterização da Amostra (1ª Fase)

As voluntárias compareceram em data e horários pré-estabelecidos para preencher a ficha de coleta de dados (Anexo C), a ficha de anamnese (Anexo A) para responder o Questionário de Prontidão para Atividade Física - Q-PAF (Anexo D). também para a realização das coletas das dobras cutâneas (Anexo E). Antes do início da coleta, todos os sujeitos leram e assinaram um termo de consentimento livre e esclarecido (Anexo B),

E em relação aos testes, as participantes foram orientadas para não consumirem cafeína ou qualquer tipo de estimulante (3h antes) no dia dos testes e evitar a prática de atividades físicas intensas durante as últimas 24 horas (COOKE, 1996). Foi explicado que a realização dos testes teriam um intervalo de no mínimo 48 horas. Foi orientado a cada sujeito a realização de um alongamento e um breve aquecimento antes da participação em cada um dos testes de avaliação.

3.3.1.2. Familiarização da Amostra (2ª Fase)

Esta fase constituiu na familiarização com o teste de lactato mínimo. Inicialmente foi explicado o procedimento metodológico e, posteriormente, foi aplicado o teste.

Foi solicitado as participantes que para a execução da CPF, em todos os testes, elas deveriam permanecer com as mãos unidas a frente do corpo (figura 3), para assim padronizar a técnica na realização do de movimento, controlada por um observador localizado na borda da piscina. Durante todos os testes as amostras tiveram a sua frequência cardíaca monitorada através de um frequencímetro de batimentos cardíacos.

Figura 3 - Exemplo da realização do exercício de CPF com as mãos unidas a frente do corpo.
3.3.1.3. Teste de Velocidade Crítica (3ª Fase)

A determinação da VC foi realizada através do protocolo proposto por Wakayoshi et al. (1992a) adaptado para o jogging aquático. De acordo com esses autores a velocidade crítica corresponde a mais alta intensidade de exercício que teoricamente pode ser mantida por um longo período de tempo sem exaustão, resultante da relação distância vs tempo.

As participantes executaram quatro testes de máximo esforço nas distâncias de 25, 37,5, 50 e 62,5 metros, e tiveram um intervalo de, no mínimo, 48 horas para realizar cada teste. Posteriormente, foram anotados os respectivos tempos para a determinação das VCs. Após obtidos os resultados dos testes, os dados de distância e tempos foram tabulados na planilha do Microsoft Excel para a determinação das velocidades críticas através do coeficiente angular (a) da equação da reta distância vs tempo, conforme mostra o gráfico da figura 4. As velocidades críticas adotadas neste estudo foram calculadas a partir das seguintes combinações: VC1 (25; 37,5; 50m), VC2 (25; 50; 62,5m), VC3(37, 5;50; 62,5m) e VC4(25; 37,5; 62,5m) e VC5 (25; 37,5; 50; 62,5m).

Figura 4 - Gráfico da distância em função do tempo de uma amostra do presente estudo utilizado para a determinação da VC através do coeficiente angular da reta.
3.3.1.4. Teste do Lactato Mínimo (4º Fase)

Foi utilizado o protocolo de LM para a determinação da VLL. O mesmo consiste de um teste em intensidade máxima, para induzir a hiperlactacidemia, procedido de testes em intensidades submáximas que vão aumentando a intensidade, chegando próximo a intensidade máxima. O lactato mínimo é determinado pela carga de trabalho correspondente à menor concentração de lactato durante o teste, ponto de desequilíbrio entre a produção e a remoção lactato (TEGTBUR et al., 1993), conforme mostra o gráfico da figura 5.

Inicialmente, 10 minutos antes do teste, foi coletado 20ml de sangue capilar do lóbulo da orelha direita, para verificar o nível de lactato de repouso.

O teste iniciou com execução de uma corrida em intensidade máxima de esforço, na distância de 25 metros, após o teste, no primeiro, no terceiro, e no quinto minuto, foi coletado 20ml de sangue do lóbulo da orelha direita do participante. Após seis minutos de recuperação, foi executado cinco corridas na distância de 25 metros em intensidades submáximas de esforço correspondente a 50%, 60%, 70%, 80% e 90% da velocidade máxima. Um minuto após o final de cada teste submáximo, foi coletado 20ml de sangue do lóbulo da orelha (figura 6).

Para auxiliar no controle das velocidades submáximas, a borda da piscina foi demarcada a cada 5 metros com cones (figura 7), onde o participante era avisado por um observador se estava se deslocando abaixo ou acima da velocidade ideal (figura 8).

![Velocidade no Limiar de Lactato](attachment:figura_5.png)

Figura 5 - Gráfico da concentração de lactato em função da velocidade de deslocamento de uma amostra do presente estudo. A seta (↑) indica a menor concentração de lactato sanguíneo durante o teste.
Figura 6 - Protocolo de lactato mínimo.

Figura 7 - Ilustração do posicionamento dos cones, a cada 5 metros, na borda da piscina, para a monitorização da velocidade de deslocamento.
3.4. INSTRUMENTOS DE MEDIDA

3.4.1. Ficha de Coleta de Dados

Para a coleta de dados utilizou-se uma ficha de dados individuais, onde foram registradas as seguintes informações referentes a cada um dos participantes: nome, data de nascimento, tempo de prática de jogging aquático, massa corporal, estatura (Anexo C).

3.4.2. Protocolo de Dobras Cutâneas (anexo E)

Para determinação da massa corporal magra e percentual de gordura, foi utilizado um plicômetro da marca CESCORF, com resolução de 1mm.

3.4.3. Questionário de Prontidão para Atividade Física - Q-PAF (anexo D)

Para coleta de informações sobre aspectos relacionados à saúde dos participantes foi aplicado o Questionário de Prontidão para Atividade Física - Q-PAF (Adaptado do Ministério da Saúde/Canadá – PAR-Q, por Nahas, 2003.)
3.4.4. Balança

Para a determinação da massa corporal foi utilizada uma balança da marca FILIZOLA, com resolução de 100 gramas.

3.4.5. Estadiômetro

Para a determinação da estatura foi utilizado um estadiômetro da marca FILIZOLA, com resolução de 1 mm.

3.4.6. Cronômetro

Para a verificação do desempenho individual foram utilizados dois cronômetros da marca Casio, com resolução de décimo de segundo.

3.4.7. Lactímetro

Para analisar a concentração de lactato foi utilizado um lactímetro Accutrend® (Roche – Basel, Suíça), com resolução de 0,8 - 22 mmol/L.

3.4.8. Termômetro

Para a verificação da temperatura da água, foi utilizado um termômetro da marca INCOTERM, com resolução de 1°C.

3.4.9. Sensor de Batimentos Cardíacos

Para a avaliação da frequência cardíaca foi utilizado um transmissor T61™ da marca POLAR, com um monitor de pulso S610™.
3.5. ANÁLISE ESTATÍSTICA

Foi utilizada estatística descritiva (médias e desvio padrão – DP). Utilizou-se o teste de Shapiro-Wilk para verificar a normalidade das variáveis, análise de variância (ANOVA) de medidas repetidas, com teste post-hoc de Bonferroni, para comparação das VCs com a VLL, e correlação Linear Produto-Momento de Pearson para verificar a relação, sem causa-efeito, entre as VCs e a VLL. Para todos os testes adotou-se um \(\alpha = 0.05 \). Todos os testes estatísticos foram realizados no programa estatístico SPSS versão 18.0.
4. RESULTADOS

A amostra foi composta por 11 mulheres voluntárias. Os dados de caracterização da amostra são apresentados na Tabela 1.

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Média</th>
<th>DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idade (anos):</td>
<td>55,7</td>
<td>± 4,50</td>
</tr>
<tr>
<td>Estatura (cm):</td>
<td>163,1</td>
<td>± 7,83</td>
</tr>
<tr>
<td>Massa corporal (Kg):</td>
<td>64,9</td>
<td>± 8,47</td>
</tr>
<tr>
<td>Gordura corporal (%):</td>
<td>35,37</td>
<td>± 3,44</td>
</tr>
<tr>
<td>Prática em CPF (anos):</td>
<td>6</td>
<td>± 6,60</td>
</tr>
<tr>
<td>VO\textsubscript{2max} indireto (ml.Kg-1.min-1):</td>
<td>39,03</td>
<td>± 4,27</td>
</tr>
</tbody>
</table>

A tabela 2 apresenta os valores médios e o DP das VCs determinadas a partir de cinco combinações das distâncias de 25; 37,5; 50 e 62,5m e da VLL de 11 mulheres praticantes de CPF.

<table>
<thead>
<tr>
<th>Média</th>
<th>DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC1(25/ 37,5/ 50m)</td>
<td>0,34 ± 0,04 m.s-1</td>
</tr>
<tr>
<td>VC2 (25/ 50/ 62,5m)</td>
<td>0,35 ± 0,04 m.s-1</td>
</tr>
<tr>
<td>VC3 (37,5/ 50/ 62,5m)</td>
<td>0,37 ± 0,06 m.s-1</td>
</tr>
<tr>
<td>VC4 (25/ 37,5/ 62,5m)</td>
<td>0,36 ± 0,04 m.s-1</td>
</tr>
<tr>
<td>VC5 (25/ 37,5 /50 /62,5m)</td>
<td>0,35 ± 0,04 m.s-1</td>
</tr>
<tr>
<td>VLL</td>
<td>0,34 ± 0,05 m.s-1</td>
</tr>
</tbody>
</table>

Nota: Velocidade crítica (VC) e velocidade no limiar de lactato (VLL). Diferenças significativas (*) para p<0,05 entre VCs e a VLL.

Não foram encontradas diferenças significativas entre as VC1, VC2, VC3, VC4 e VC5 com a VLL.

Na figura 9 são demonstrados os dados das correlações entre VLL e VC1 (A), VLL e VC2 (B), VLL e VC3 (C), VLL e VC4 (D) e, VLL e VC5 (E).
Foi encontrada correlação muito forte entre a VC1 e VLL e correlações fortes entre as VC2, VC3, VC4 e VC5 e a VLL (figura 9).

Figura 9 – Gráficos de correlação entre a VLL e as VCs de 11 mulheres praticantes de CPF.
5. DISCUSSÃO

O Objetivo principal deste estudo foi comparar a velocidade no limiar de anaeróbico, mensurado pelo lactato mínimo, com as velocidades críticas na corrida em piscina funda. Os valores das velocidades críticas (VC1, VC2, VC3, VC4 e VC5) não apresentaram diferenças significativas com a VLL, demonstrando que a VC pode ser utilizada como um método indireto para identificar a VLL em CPF em mulheres com características semelhantes às estudadas neste estudo.

Foram encontrados dois estudos realizados com CPF (NAKAMURA et al., 2005; SILVA et al., 2006). O estudo de Silva et al., (2006) comparou o limiar anaeróbico (velocidade referente a 3,5mMol) com a velocidade crítica (obtida por três equações diferentes), a amostra foi composta por 10 sujeitos de ambos os sexo (23,1 ± 2,2 anos). Ao realizarem a análise de variância (ANOVA) os resultados não apresentaram diferenças significativas, concordando com os achados do presente estudo. No entanto, os autores aplicaram a técnica de Bland-Altman, uma análise estatística aparentemente mais sensível para testar a concordância entre as medidas e, nesse caso foi evidenciada uma baixa concordância entre as variáveis. Por esse motivo os autores sugerem cautela na utilização da VC como um indicador do LA. Já o estudo de Nakamura et al. (2005), compararam dois métodos indiretos, a VC com o limiar de esforço percebido (LEP), o que fica complicado comparar com o presente estudo que busca encontrar estudos que compararam métodos indiretos, a VC, com métodos diretos, a máxima fase lactato, o lactato mínimo, entre outros.

As distâncias escolhidas para a determinação da VC podem influenciar nos resultados encontrados (GREGO et al., 2003; TARTARUGA et al., 2009; GREGO et al., 2003; MACHADO et al., 2009) podendo subestimar ou superestimar a velocidade no LA. No estudo de Machado et al. (2009) a VC1 (50, 100 e 200m - 1,47 ± 0,13 m.s⁻¹), combinação dos testes máximo no nado crawl de curta duração, apresentou um valor significativamente maior que as outras combinações, VC2 (100, 200 e 400m), VC3 (200, 400 e 800m) e VC4 (50, 100, 200, 400 e 800m), (1,38 ± 0,10; 1,34 ± 0,09; 1,36 ± 0,09 m/s), respectivamente (p<0,01). Segundo os autores, a utilização da combinação de curta duração nos testes máximos aumenta os valores da VC, enquanto, as combinações de média e longa duração, proporcionam um efeito contrário, diminuem o valor da VC. O que está de acordo com os achados no estudo de Tartaruga et al. (2009), onde a combinação das menores distâncias VC2 (200,
500m – 3,76 ± 0,24 m/s) foi significativamente maior que as combinações das maiores distâncias VC1 (200, 500, 1000m), VC3 (500, 1000m) e VC4 (200, 1000m); (3,33 ± 0,33 m/s; 3,17 ± 0,37 m/s; 3,36 ± 0,32 m/s), respectivamente. Esses achados são contrários aos resultados encontrados no presente estudo.

No presente estudo, a combinação das menores distâncias VC1(25; 37,5; 50m - 0,34± 0,04 m/s) apresentou o menor valor da VC, já as outras combinações VC2 (25; 50; 62,5m) VC3 (37,5; 50; 62,5m) VC4 (25;37,5; 62,5m) VC5 (25; 37,5; 50; 62,5m) (0,35± 0,04 m/s; 0,37 ± 0,06 m/s; 0,36 ± 0,04 m/s; 0,35 ± 0,04 m/s) respectivamente, apresentaram os valores mais elevados da VC. Segundo Toubekis et al., (2006), o fato da combinação de longas distâncias poderem subestimar o valor da VC, enquanto a combinação de curtas distâncias poderem superestimar pode ser atribuída a não linearidade do tempo versos distância. No estudo de Machado et al., (2009) a maior distância (800m) correspondeu a 16 vezes a menor distância (50m), no de Tartaruga et al., (2009) a maior distância (1000m) correspondeu a 5 vezes a menor distância. Nesse estudo, a maior distância (62,5m) não corresponde a 3 vezes a menor distância (25m). Possivelmente essa menor variação entre as distâncias, resultou em uma maior linearidade do tempo versos distância, o que pode justificar o fato das VCs não subestimaram ou superestimaram significativamente os valores da VLL.

Um outro aspecto que pode explicar a não diferença significativa entre as combinações das VCs com a VLL é o protocolo utilizado para determinar o LA. No presente estudo o protocolo utilizado foi o protocolo de lactato mínimo, os teste máximos e submáximos foram realizados com a distância de 25m, distância essa próxima das demais utilizadas nas combinações das VCs (25; 37,5; 50; 62,5m). Segundo Hill (1993) a escolha das cargas preditivas parecem ser fundamental para se conseguir resultados adequados e com alto grau de precisão. Portanto, para minimizar o erro às estimativas, o ideal é que o tempo de exaustão seja entre 2 e 10 minutos (HILL 1993). Nesse estudo, as distâncias de 25m e de 37,5m tiveram os tempos médios de 60 segundos, 100 segundos (respectivamente). Já as demais distâncias (50, 62,5m) os tempos obtidos nos testes (média) estão de acordo com os sugerido por Hill (1993). A utilização dos tempos próximos ao ideal e os tempos ideais podem ter auxiliado para os resultados das VCs não apresentarem diferença significativa com a VLL.
Apesar de todas VCs não apresentarem diferença significativa com a VLL, a VC1 que possui a combinação das menores distâncias, (25/ 37,5/ 50m) apresentou a mesma velocidade média VC1 (0,34 ± 0,4 m/s) que velocidade média da VLL (0,34 ± 0,5 m/s). Já a VC3 que possui a combinação das maiores distâncias (37,5/ 50/ 62,5m), apesar de não apresentar diferença significativa, apresentou velocidade média (0,37 ± 0,06 m.s\(^{-1}\)) maior que a VLL (0,34±0,5 m.s\(^{-1}\)). Além disso, foi observado na relação da VC1 com a VLL (r= 0,956) uma correlação muito forte, sugerindo que a combinação das distâncias (25/ 37,5/ 50m) é a mais indicada para a determinação da VC na CPF.

6. CONCLUSÃO

Conclui-se que a VC pode ser utilizada como um método indireto para identificar a VLA em mulheres praticantes de CPF com características semelhantes às do presente estudo.

Como aplicação prática, sugere-se a utilização da VC para identificação da VLA e, consequentemente, para prescrição de treino de mulheres entre 50 a 60 anos, praticantes de CPF. Por exemplo, para aplicar um treino realizado a 12% abaixo do LA, na distância de 100m, utilizando o valor da VC1 da amostra 1 (Anexo F) tem-se VC1=0,34 m/s. É necessário realizar duas vezes uma regra de três simples, na primeira encontra-se que o tempo da amostra na VC é de 294 segundo para os 100m, na segunda encontra-se o tempo correspondente a 12% abaixo do LA (35 segundos). Assim, para a amostra percorrer os 100m, 12% abaixo do LA, ela deve percorrer essa distância em 329 segundos. Dessa forma é possível aproveitar as vantagens que o método indireto da VC oferece como a fácil aplicação e o baixo custo financeiro, e prescrever um treino individualizado o que possivelmente resultará na melhora do desempenho.
7. REFERÊNCIAS

Hiyane, C. W.; Simões, H. G.; Campbell, C. S. G. Velocidade crítica como um método não invasivo para estimar a velocidade de lactato mínimo no ciclismo. Revista Brasileira de Medicina do Esporte, v.12, n.6, nov./dez., 2006.

8. ANEXOS

ANEXO A - FICHA DE ANAMNESE

Nome:___ Data:____/____/____

1 - Anamnese clínica:
 a) Cite as doenças familiares nos últimos anos:

 __
 __

 b) Cite as doenças pessoais nos últimos anos ______________________

 __

2 - Sistema cardiovascular
 () Varizes nas Pernas () Ponte de Safena () Infarto do Coração
 () Pressão Alta () Arritmia
 () Outros: __________________________

3 - Sistema respiratório
 () Asma () Sinusite () Rinite
 () Pneumonia de repetição () Otitite () Bronquite ou Efisema
 () Outros: __________________________

4 - Sistema endócrino e nutrição
 () Diabete () Colesterol Aumentado () Obesidade
 () Tireóide () Distúrbios Hormonais () Pouco Apetite
 () Perda de Peso () Outro: __________________________

5 - Sistema músculo–esquelético
 () Dor na Coluna () Dor Muscular () Osteoporose
 () Artrite () Fraturas () Hérnia de Disco
 () Dores Articulares
 (especifique):__________________________
()Outros: __

6 - Você já foi submetido(a) a algum tipo de cirurgia? ()Sim ()Não
Qual? __

7 - Você possui algum tipo de alergia? ()Sim ()Não
Qual? __

8 - Você utiliza algum tipo de medicamento? ()Sim ()Não
Qual? __

9 - Você apresenta algum dos sintomas abaixo durante o exercício?
() Falta de Ar () Dor no Peito () Tontura
() Câimbras () Tosse () Palpitação
() Outros: __

13 - Você alguma vez teve restrição médica que impedisse de praticar atividade física? () Sim () Não
Se positivo, qual o motivo? __
__

Assinatura: __
ANEXO B - TERMO DE CONSENTIMENTO LIVRE ESCLARECIDO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
ESCOLA DE EDUCAÇÃO FÍSICA

TERMO DE CONSENTIMENTO LIVRE ESCLARECIDO

Eu___ ______________, portador do documento de identidade número _________________, concordo voluntariamente a participar do estudo “COMPARAÇÃO ENTRE A VELOCIDADE NO LIMIAR ANAERÔBIO COM AS VELOCIDADES CRÍTICAS NA CORRIDA EM PISCINA FUNDA”.

Declaro estar ciente de que o estudo será desenvolvido pela acadêmica Fabiana Fernandes Vaz, aluna da graduação da Escola de Educação Física da Universidade Federal do Rio Grande do Sul, orientada pelo Professor Doutor Luiz Fernando Martins Kruel, com o objetivo identificar a velocidade de corrida em piscina funda no LA, e compará-la com as velocidades críticas. Estou ciente de que as informações obtidas no decorrer deste trabalho serão utilizadas para a elaboração do trabalho de conclusão de curso da referida autora e que todas as informações utilizadas deverão manter sigilo dos indivíduos avaliados.

✓ Compreendo que:

- Serei medida (peso, altura, dobras cutâneas);
- Serei solicitada a correr em piscina funda quatro corridas em intensidade máxima de esforço, com distâncias pré-determinadas, (25; 37,5; 50; 62,5 metros);
- Serei solicitada a correr em piscina funda cinco corridas em intensidades submáxima de esforço, na distância de 25 metros;
- Serei solicitada a fazer coleta de 20Ml de sangue do lóbulo da orelha direita.

✓ Eu entendo que durante os testes:

- Os procedimentos expostos acima serão explicados para mim pela acadêmica Fabiana Fernandes Vaz ou pelo professor Doutor Luiz Fernando Martins Kruel;
- Eu poderei sentir dor e cansaço muscular temporário. Há a possibilidade de alterações normais, decorrentes do esforço, aumentando a minha freqüência cardíaca e a pressão sangüínea. Porém, eu entendo que minha FC será
monitorada durante todos os testes através de um frequencímetro, e que eu posso terminar o teste em qualquer momento sob meu critério;

✓ Eu entendo que:

- Todos os dados relativos a minha pessoa irão ficar confidenciais e disponíveis apenas sob minha solicitação escrita. Além disso, eu entendo que no momento da publicação, não irá ser feita associação entre os dados publicados e a minha pessoa.
- Não há compensação monetária pela minha participação nesse estudo;
- É possível que ocorram lesões físicas resultantes dos exercícios de corrida em piscina funda, mas caso isso aconteça, a ajuda será providenciada, sob responsabilidade dos pesquisadores. Eu entendo que não haverá nenhum médico ou desfibrilador presente durante os testes, mas haverá um assistente com curso de primeiros socorros, assim como estará disponível no Centro Natatório uma linha telefônica para a Assistência Médica de Emergência (3331-0212).
- Posso realizar contato com o Professor Doutor Luiz Fernando Martins Kruel e com Fabiana Fernandes Vaz, para quaisquer problemas referentes à minha participação no estudo, ou caso eu sentir que haja violação dos meus direitos, através dos telefones (51) 3308-5820 (Prof. Kruel), (51) 84142332 (Fabiana) e (51) 3308-6000 (Comitê de Ética em Pesquisa da UFRGS) ou dos e-mail kruel@esef.ufrgs.br e fabianavaz@gmail.com

Porto Alegre, ___de__________________de 2009.

Participante:
Nome completo: ___
Assinatura do sujeito (participante): ______________________________________
Assinatura do pesquisador: ___
ANEXO C - FICHA DE COLETAS DE DADOS

Nome: __

Data: ____/____/______ Data de nascimento: ____/____/_______ Idade: _______

Tempo de prática no jogging aquático: ________________________________

Massa corporal: ________________________________ Estatura: ____________________________

VO₂Máx______________________________ FC máx______________________________
QUESTIONÁRIO DE PRONTIDÃO PARA ATIVIDADE FÍSICA - Q-PAF

Praticar atividades físicas não oferece riscos para a maioria das pessoas. Mas, se você tem dúvidas, responda às questões abaixo para saber se existe algum motivo para consultar seu médico antes de tornar-se mais ativo(a) fisicamente.

Se você tem entre 15 e 60 anos, o Q-PAF indicará se você deve procurar um médico. Se você tem mais de 60 anos ou nunca praticou atividades físicas mais intensas, consulte seu médico antes de iniciar os exercícios.

1. Algum médico já disse que você possui algum problema de coração e que só deveria fazer atividades físicas com orientação médica? [] Sim [] Não
2. Você sente dores no peito quando pratica atividades físicas? [] Sim [] Não
3. No último mês, você sentiu dores no peito sem que estivesse fazendo atividades físicas? [] Sim [] Não
4. Você perdeu o equilíbrio, sentiu tonturas ou alguma vez perdeu os sentidos (desmaiou)? [] Sim [] Não
5. Você tem algum problema nas articulações ou nos ossos que poderia piorar se você praticasse atividades físicas? [] Sim [] Não
6. Você toma algum remédio para pressão alta ou problema cardíaco? [] Sim [] Não
7. Existe qualquer razão pela qual você deveria evitar atividades físicas? [] Sim [] Não

Se você respondeu SIM a uma ou mais questões, consulte seu médico antes de tornar-se mais ativo(a) fisicamente.
Se você respondeu NÃO a todas as questões, você pode considerar-se razoavelmente apto para praticar atividades físicas, iniciando com moderação e aumentando gradualmente o que você fizer – assim é mais seguro e mais fácil.

Não inicie agora um programa de atividades físicas se

Você não se sente bem devido a uma doença temporária, como um resfriado ou febre. Espere até sentir-se melhor.

Você está (ou acha que está) grávida – fale com o seu médico antes iniciar atividades físicas mais intensas.

IMPORTANTE: caso sua saúde se altere e você passe a responder algum SIM em qualquer das questões acima, consulte um profissional de saúde.
ANEXO E - PROCEDIMENTOS E FÓRMULAS PARA COMPOSIÇÃO CORPORAL

VESTIMENTA: Será solicitado que as participantes utilizarem duas peças.

MOMENTO DA COLETA: Para a realização das medidas, será solicitado as participantes que não tenham se exercitado anteriormente.

TÉCNICA DE MEDIDA: Serão adotados os procedimentos sugeridos por Heyward e Stolarczyk (1996), quanto à técnica de medida e os pontos anatômicos utilizados. Todas as medidas serão realizadas por duas vezes, de forma intercalada (circuito), sendo que, as que apresentarem diferença maior que 5%, uma terceira medida será realizada, excluindo-se a de maior diferença. A média dos valores será utilizada para o cálculo nas respectivas fórmulas.

FÓRMULAS:

Cálculo da densidade corpora:

Densidade = 1,10726863 – 0,00081201 (\(\sum\) 4 dobras = subescapular, triceps, suprailíaca e paturrilha média) + 0,00000212 (\(\sum\) 4 dobras) \(^2\) – 0,00041761 (idade) (PETROSKI, 1995)

Cálculo de conversão da densidade corporal para o percentual de gordura:

\[\% \text{Gordura} = \left(\frac{4,95}{\text{Densidade}} - 4,50\right) \times 100\] (Siri, 1961 apud HEYWARD e STOLARCZYK, 1996)

Tabela para coletas das Dobras cutâneas

<table>
<thead>
<tr>
<th>Nome: ___________________________</th>
<th>Data: _______</th>
<th>Somatório das Dobras: _______</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Gordura Corporal: _____________</td>
<td>% Massa Corporal Magra: ______________</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1ª medida</th>
<th>2ª medida</th>
<th>3ª medida</th>
<th>Valor final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricptal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subescapular</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peitoral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axiliar média</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supra-íliaca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coxa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panturrilha</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 4 - Resultado das VCs VC1, VC2, VC3, VC4, VC5 e VLL do grupo amostral.

<table>
<thead>
<tr>
<th>Amostra</th>
<th>VC1</th>
<th>VC2</th>
<th>VC3</th>
<th>VC4</th>
<th>VC5</th>
<th>VLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,344</td>
<td>0,382</td>
<td>0,393</td>
<td>0,395</td>
<td>0,381</td>
<td>0,328</td>
</tr>
<tr>
<td>2</td>
<td>0,306</td>
<td>0,339</td>
<td>0,403</td>
<td>0,351</td>
<td>0,344</td>
<td>0,298</td>
</tr>
<tr>
<td>3</td>
<td>0,264</td>
<td>0,273</td>
<td>0,250</td>
<td>0,269</td>
<td>0,266</td>
<td>0,260</td>
</tr>
<tr>
<td>4</td>
<td>0,379</td>
<td>0,359</td>
<td>0,383</td>
<td>0,359</td>
<td>0,365</td>
<td>0,367</td>
</tr>
<tr>
<td>5</td>
<td>0,350</td>
<td>0,341</td>
<td>0,347</td>
<td>0,340</td>
<td>0,343</td>
<td>0,362</td>
</tr>
<tr>
<td>6</td>
<td>0,383</td>
<td>0,403</td>
<td>0,470</td>
<td>0,409</td>
<td>0,409</td>
<td>0,384</td>
</tr>
<tr>
<td>7</td>
<td>0,376</td>
<td>0,367</td>
<td>0,377</td>
<td>0,367</td>
<td>0,370</td>
<td>0,392</td>
</tr>
<tr>
<td>8</td>
<td>0,347</td>
<td>0,327</td>
<td>0,332</td>
<td>0,326</td>
<td>0,330</td>
<td>0,333</td>
</tr>
<tr>
<td>9</td>
<td>0,355</td>
<td>0,362</td>
<td>0,364</td>
<td>0,363</td>
<td>0,361</td>
<td>0,336</td>
</tr>
<tr>
<td>10</td>
<td>0,266</td>
<td>0,306</td>
<td>0,303</td>
<td>0,320</td>
<td>0,302</td>
<td>0,266</td>
</tr>
<tr>
<td>11</td>
<td>0,381</td>
<td>0,412</td>
<td>0,432</td>
<td>0,423</td>
<td>0,413</td>
<td>0,410</td>
</tr>
</tbody>
</table>

Nota: VC1 (25; 37,5; 50m), VC2(25; 50; 62,5m), VC3 (37,5; 50; 62,5m), VC4 (25; 37,5; 62,5m) e VC5 (25; 37,5; 50; 62,5m)