CARACTERIZAÇÃO DE SOLDA EM AÇO INOXIDÁVEL SUPER DUPLEX EM FADIGA

Bill Paiva dos Santos

Trabalho de Diplomação

Orientador: Professor Dr. Telmo Roberto Strohaecker

Porto Alegre
2010
Dedico esta dissertação a minha família e a todos que contribuíram nesta caminhada...
AGRADECIMENTOS

Ao Professor Dr. Telmo Roberto Strohaecker;
Ao Engenheiro Yonathan Reboh, que possibilitou a realização deste estudo;
Ao Engenheiro Cláudio Almirón, pela co-orientação;
Ao Engenheiro Leandro Pereira Costa, pela paciência;
Ao Engenheiro Fabiano Mattei, pelo auxílio na realização dos ensaios;
Ao Engenheiro Diego Belato, por sua grande ajuda na realização das análises;
Aos Engenheiros Cleber de Lima Lessa e Marcelo Caregnato, pelo auxílio nas análises metalográficas;
Ao grande futuro Engenheiro Jeferson Haag, pelo auxílio nos ensaios;
A minha namorada e psicóloga, pela paciência e incondicional apoio na realização deste trabalho;
SUMÁRIO

LISTA DE FIGURAS .. V
LISTA DE TABELAS .. VIII
LISTA DE ABREVIATURAS E SÍMBOLOS .. IX
RESUMO .. X
ABSTRACT .. XI
1.0 INTRODUÇÃO ... 1
2.0 REVISÃO DA LITERATURA .. 2
 2.1 Aços Inoxidáveis Duplex e Super Duplex (Generalidades) 2
 2.2 Soldagem a Arco e Proteção Por Gás e Eletrodo Não Consumível (“TIG”) 5
 2.3 Fadiga .. 7
3.0 PROCEDIMENTO EXPERIMENTAL .. 11
 3.1 Equipamento do Ensaio De Fadiga Em Flexão ... 11
 3.2 Equipamento do Ensaio de Fadiga Axial ... 13
 3.3 Materiais Analisados ... 16
 3.4 Ensaio de Flexão em Quatro Pontos ... 17
 3.5 Ensaio de Fadiga Axial ... 19
 3.6 Análise de Falha ... 20
 3.6.2 Análise da Superfície de Fratura em MEV ... 22
 3.6.3 Metalografia ... 26
 3.6.4 Análise Microestrutural ... 27
 3.6.5 Perfil de Microdurezas ... 28
4.0 RESULTADOS E DISCUSSÃO ... 29
 4.1 Considerações Iniciais ... 29
 4.2 Vida em Fadiga ... 29
 4.3 Caracterização Metalográfica ... 30
 4.4 Ensaios de Microdureza Vickers .. 31
5.0 CONCLUSÕES ... 33
6.0 SUGESTÕES PARA TRABALHOS FUTUROS .. 34
7.0 REFERÊNCIAS BIBLIOGRÁFICAS .. 35
LISTA DE FIGURAS

Figura 1 - Diagrama tempo-temperatura-transformação mostrando o efeito dos elementos de liga e as fases que podem precipitar nos aços inoxidáveis duplex. ASM. Specialty Handbook “Stainless Steel”. Ohio: American Society for Metals; 1994. 5

Figura 2 – Ilustração esquemática do processo TIG (MACHADO 1996). 5

Figura 3 - Eletrodo de tungstênio num movimento de translação ao redor de um tubo, com velocidade angular w (ARIMA 2003). ... 6

Figura 4 - Ilustração esquemática do processo de soldagem TIG orbital. (ARCMACHINES 2010)... 7

Figura 5 - Diagrama S-N com três curvas obtidas para diferentes razões de carregamento... 10

Figura 6 - Fluxograma Para a Caracterização de Solda do Aço Inoxidável Super Duplex em Fadiga. ... 11

Figura 7 – Apresentação do ATU 10 (atuador de 10 kN) .. 12

Figura 8 - Descrição dos componentes da ATU 10 .. 13

Figura 9 - Apresentação da MTS 810 .. 14

Figura 10 - Descrição dos Componentes da MTS 810 .. 15

Figura 11 - Sistema de Monitoramento e Controle (TestWare) ... 16

Figura 12- Material Analisado ... 16

Figura 13 - Desenho Detalhado do Tubo Soldado (dimensionamento em milímetros) 17

Figura 14 - Dispositivo para Ensaio de Flexão em Quatro Pontos .. 18

Figura 15 - Dispositivo para Ensaio de Fadiga Axial ... 19

Figura 16 - Fluxograma da Análise de Falha ... 20
Figura 17 - Superfície de Fratura CP - SI_027_09_17 ... 21
Figura 18 - Superfície de Fratura CP - SI_027_09_19 ... 21
Figura 19 - Superfície de Fratura CP - SI_027_09_28 ... 22
Figura 20 - Superfície de Fratura CP - SI_027_09_38 ... 22
Figura 21 – Equipamento: MEV ... 23
Figura 22 - Superfícies de Fratura do CP – SI_027_09_17 ... 23
Figura 23 - Esquerda: a região apresenta modo de fratura frágil representada pelos "dimples";
 direita: apresenta modo de transição de fratura dúctil-frágil .. 24
Figura 24 - Superfícies de Fratura do CP – SI_027_09_19 (esquerda: visão geral da área de
 falha; direita: região de nucleação da falha) .. 24
Figura 25 - Esquerda: a região apresenta modo de fratura dúctil representada pelos "dimples";
 direita: apresenta modo de fratura frágil representada pelas “quase” clivagens 24
Figura 26 - Superfície de Fratura do CP - SI_027_09_28 ... 25
Figura 27 - Superfície de fratura do CP - SI_027_09_39 (região apresentando modo de fratura
 dúctil representado pelos “dimples”). .. 25
Figura 28 - Superfície de fratura do CP - SI_027_09_39 (região apresentando modo transição
 de fratura dúctil-frágil representado pelas “quase” clivagens) ... 26
Figura 29 - Esquerda: cortadeira metalográfica Skill-Tec CSK 80; Direita: Cinta Lixa (Opera
 com lixa granulométrica 80) ... 26
Figura 30 - Esquerda: Embutidora Metalográfica Struers Labopress 3; Direita: Politriz Struers
 DP-10 .. 27
Figura 31 - Esquerda: Capela para manipulação de reagentes químicos; Direita: Microscópio
 Ótico Olympus BX51M. ... 27
Figura 32 - Diagrama S-N resultante dos ensaios. .. 29
Figura 33 - Microestrutura do metal de base característico dos AISD (50% ferrita e 50% austenita); Esquerda: ataque com ácido oxálico 10%; Direita: ataque com Murakamis. 30

Figura 34 - Microestrutura da região de transição entre o metal de base e o metal de fusão;

Ataque com Murakamis. .. 30

Figura 35 – Morfologias da Ferrita no metal de fusão em matriz Austenítica; (A) Ataque com Murakamis; (B) Ataque com Murakamis; (C) Ataque com Ácido Oxálico 10 %; (D) Ataque com Ácido Oxálico 10 %.. 31

Figura 36 - Esquerda: Microdureza HV do CP SI_027_09_17; Direita: Microdureza HV do CP SI_027_09_19 .. 32

Figura 37 - Esquerda: Microdureza HV do CP SI_027_09_28; Direita: Microdureza HV do CP SI_027_09_38 .. 32
LISTA DE TABELAS

Tabela 1: Principais aços inoxidáveis Duplex, Super Duplex e Híper Duplex com suas respectivas composições químicas e PRE. ... 3

Tabela 2 – Valores recomendados para ensaios de fadiga ... 9

Tabela 3 - Parâmetros Utilizados nos Ensaios de Fadiga em Flexão .. 18

Tabela 4 - Parâmetros Utilizados nos Ensaios de Fadiga Axial ... 20
LISTA DE ABREVIATURAS E SÍMBOLOS

<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Explicação</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIG</td>
<td>Tungsten Inert Gas;</td>
</tr>
<tr>
<td>CP</td>
<td>Corpo de prova;</td>
</tr>
<tr>
<td>CP’s</td>
<td>Corpos de prova;</td>
</tr>
<tr>
<td>mm</td>
<td>Milímetros;</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz;</td>
</tr>
<tr>
<td>S-N</td>
<td>Carga versus número de ciclos;</td>
</tr>
<tr>
<td>ZTMA</td>
<td>Zona Termomecanicamente Afetada;</td>
</tr>
<tr>
<td>ZAC</td>
<td>Zona Afetada pelo Calor;</td>
</tr>
<tr>
<td>PRE</td>
<td>Pitting Resistance Equivalent;</td>
</tr>
<tr>
<td>AID</td>
<td>Aços Inoxidáveis Duplex;</td>
</tr>
<tr>
<td>TTT</td>
<td>Tempo-Temperatura-Transformação;</td>
</tr>
<tr>
<td>α’</td>
<td>Alpha prime;</td>
</tr>
<tr>
<td>σ</td>
<td>Sigma;</td>
</tr>
<tr>
<td>γ₂</td>
<td>Austenita secundária;</td>
</tr>
<tr>
<td>χ</td>
<td>Chi;</td>
</tr>
<tr>
<td>ASM</td>
<td>American Society of Metals;</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials;</td>
</tr>
<tr>
<td>kN</td>
<td>kilo Newtons;</td>
</tr>
<tr>
<td>N</td>
<td>Newtons;</td>
</tr>
<tr>
<td>MEV</td>
<td>Microscópio Eletrônico de Varredura;</td>
</tr>
<tr>
<td>MB</td>
<td>Metal Base;</td>
</tr>
</tbody>
</table>
RESUMO

O objetivo deste trabalho foi realizar um estudo da vida em fadiga de juntas soldadas de tubos. As amostras eram de tubos de umbilicais com diâmetro externo e interno de 15,3 e 12,5 mm fabricado em aço inoxidável super duplex. A região da junta soldada sofreu uma sequência de dois diferentes tipos de carregamento, flexão e tração axial, para que sejam reproduzidas as condições de instalação e operação conforme estudos de campo previamente realizados. Seguindo a sequência de carregamento estabelecida, foram levantadas curvas de fadiga e, em seguida, as amostras que apresentaram falhas foram submetidas à análise de falha e análises metalográficas.
ABSTRACT

The objective of this work was to study the fatigue life of welded joints of pipes. The samples were tube umbilical with outer and inner diameter of 15.3 and 12.5 mm made of super duplex stainless steel. The region of the weld has a sequence of two different types of loading, bending and axial traction, so they play the conditions of installation and operation as previously conducted field studies. Following the established sequence of loading, fatigue curves were raised and then the samples that failed were submitted to failure analysis and metallographic analysis.
1.0 INTRODUÇÃO

A escassez do petróleo junto com seu elevado preço proporcionou sua extração em ambientes cada vez mais agressivos, com a prospecção de petróleo em águas profundas (entre 1000 e 2000 metros) e ultra profunda (acima de 2000 metros) (XAVIER 2009). Para tal atividade, tornou-se necessário desenvolver ligas que suportem as exigências para que equipamentos possam trabalhar em condições extremamente adversas, como solicitação mecânica elevada, ambiente agressivo, dificuldade de inspeção e manutenção.

Os aços inoxidáveis super duplex por apresentarem favorável relação resistência à corrosão/custo vem sendo cada vez mais utilizados pela indústria do petróleo. Estes materiais tem por característica a elevada resistência mecânica, o que possibilitou que os equipamentos da indústria de petróleo offshore ficassem mais leves e a elevada resistência à corrosão que aumentou a vida útil destes, diminuindo por consequência, sua manutenção.

Contudo, a falta de experiência técnica com estes novos materiais motivou o desenvolvimento deste estudo que irá fazer a caracterização metalográfica de solda em aço inoxidável super duplex em fadiga. Em se tratando de estruturas offshore, o conhecimento da vida em fadiga das juntas soldadas destes materiais, levando em consideração as condições descritas acima é de suma importância para confiabilidade do projeto destas.
2.1 Aços Inoxidáveis Duplex e Super Duplex (Generalidades)

A descoberta dos aços inoxidáveis se deu em meados de 1900, por dois metalurgistas franceses. Estes publicaram diversos estudos sobre propriedades e estruturas de aços martensíticos contendo 13% de cromo e ferríticos com 17% de cromo. Em 1909, foram publicados estudos sobre ligas de ferro-cromo-níquel, já considerando a classificação dos aços inoxidáveis por sua estrutura (martensítico, ferrítico e austenítico).

Os primeiros aços com a microestrutura duplex (austeno-ferrítico) surgiram em 1927, mas somente à partir de 1930 tornaram-se disponíveis comercialmente. Estes, não apresentavam boa soldabilidade, fato atribuído principalmente à falta de conhecimentos nos processos metalúrgicos que ocorrem na zona afetada pelo calor (ZAC) e pelo desbalanceamento das fases austenita e ferrita (não favorável), apresentando predomínio de ferrita. A aceitação pela indústria somente foi obtida quatro décadas após, quando conseguiram um balanceamento de fases mais equilibrado, e quando com uso do nitrogênio como elemento de liga, foram resolvidos os problemas de soldagem desta liga (ZUCAS 2008).

Nos anos 70, foram largamente utilizados nas indústrias do petróleo e gás, papel e celulose, química e petroquímica, resolvendo problemas de corrosão por pite e sob tensão, responsáveis pelo maior número de falhas por corrosão dos aços inoxidáveis. Possibilitaram também, o uso de construções mais leves devido às suas melhores propriedades mecânicas.

Hoje, a maioria destas ligas são projetadas para conterem iguais quantidades de cada fase em sua microestrutura na condição recozida, e são caracterizadas por terem uma baixa quantidade de carbono (<0,03% em massa) incluindo adições de molibdênio, tungstênio, cobre e nitrogênio. Devido a grande quantidade de elementos de liga, estes materiais podem sofrer mais facilmente com a precipitação de fases indesejáveis quando submetidos a condições de algum tratamento térmico na sua fabricação.
As vantagens específicas oferecidas pelos aços inoxidáveis duplex e super duplex em relação a série 300 convencional dos aços inoxidáveis são a resistência ao escoamento (aproximadamente o dobro dos aços austeníticos), a maior resistência ao trincamento de corrosão sob tensão e a maior resistência a fadiga por pites (Leite).

O índice de resistência à corrosão por pites (*Pitting Resistance Equivalent*) para aços inoxidáveis super duplex tem um valor mínimo de 40. Este PRE é definido em função da composição química, sendo:

\[
\text{PRE}_N = \% \text{Cr} + 3,3\% \text{Mo} + 16\% \text{N} \quad \text{Equação 1}
\]

\[
\text{PRE}_W = \% \text{Cr} + 3,3 \times (\% \text{Mo} + 0,5\% \text{W}) + 16\% \text{N} \quad \text{Equação 2}
\]

A Tabela 1 apresenta os principais aços inoxidáveis duplex, super duplex e híper duplex com suas respectivas composições químicas e PRE.

Tabela 1: Principais aços inoxidáveis Duplex, Super Duplex e Híper Duplex com suas respectivas composições químicas e PRE.
O desempenho dos aços inoxidáveis duplex e super duplex pode ser seriamente afetados pela soldagem. O balanço microestrutural do metal base (iguais proporções de ferrita e austenita) será afetado pelo ciclo térmico de soldagem. Se houver mudança no balanço da microestrutura ao longo do material soldado, a perda das propriedades dos AID pode ser significativa. Esses materiais apresentam propriedades que derivam tanto da fase ferrítica quanto da austenítica em sua microestrutura. Os aços austeníticos possuem excelente soldabilidade e tenacidade em baixas temperaturas, ao passo que a resistência a corrosão sob tensão por cloretos é baixa, assim como a resistência mecânica. Já os aços ferríticos possuem alta resistência a corrosão sob tensão por cloretos, mas baixa tenacidade. A microestrutura duplex com alta quantidade da fase ferrítica terá então baixa tenacidade ao entalhe, enquanto que uma grande fase austenítica levará a uma melhor resistência associada a corrosão sob tensão por cloretos (LEITE 2009).

Precipitação de Fases nos Aços Inoxidáveis Duplex

A alta quantidade de elementos de liga e a presença da matriz ferrítica nos aços inoxidáveis duplex os tornam suscetíveis a formação de diversas fases não desejadas, mas que acabam por se formar em temperaturas que variam de 300°C a 1000°C. A Exposição destas ligas nessa faixa de temperatura pode ocorrer devido a tratamentos térmicos mal executados, exposição em condições de trabalho e ciclos térmicos devido operações de soldagem.

A Figura 1 - Diagrama tempo-temperatura-transformação mostrando o efeito dos elementos de liga e as fases que podem precipitar nos aços inoxidáveis mostra o diagrama tempo-temperatura-transformação (TTT) para os aços inoxidáveis duplex, enfatizando duas faixas de temperaturas distintas para o aparecimento de diversas fases. A primeira faixa de temperatura se situa em 300°C e 600°C, onde o aparecimento da fase alpha prime (α’) (fragilização a 475°C) é de maior relevância. A segunda fase se situa entre 600°C e 1000°C, onde a fase sigma (σ) é a mais deletária, em conjunto com as outras fases que também se formam, como a austenita secundária (γ’), chi (χ), nitretos (Cr2N), fase R e carbonetos (M7C3, M23C6) (LEITE 2009, METALS HANDBOOK).
2.2 Soldagem a Arco e Proteção Por Gás e Eletrodo Não Consumível ("TIG")

Este processo de soldagem é provavelmente mais conhecido no Brasil pela sigla em inglês TIG ("Tungsten Inert Gas"). No mesmo, um eletrodo não consumível de tungstênio puro - ou composto de outros metais, ou óxidos – gera um arco elétrico com a peça, que juntamente com a poça de fusão assim formada, é protegido da atmosfera por um gás inerte (geralmente argônio), como ilustrado esquematicamente na Figura 2 – Ilustração esquemática do processo TIG (MACHADO 1996).
Figura 2 – Ilustração esquemática do processo TIG (MACHADO 1996).

O modo de operação TIG é geralmente manual, mas também encontra emprego nos modos semi-automático e automático, sendo utilizado para soldar juntas pela simples fusão dos metais base envolvidos, ou, também, com a adição de consumível. Neste caso, isso é realizado pelo soldador através de vareta, ou contínua e automaticamente, com arame proveniente de uma bobina (MACHADO 1996).

Soldagem TIG Orbital

Nos últimos 20 anos, esforços têm sido empreendidos por centros de pesquisa, fabricantes de equipamentos e prestadores de serviços no desenvolvimento de uma tecnologia voltada à mecanização da soldagem TIG de tubos (soldagem TIG orbital). Os avanços obtidos têm conduzido à crescente utilização dos cabeçotes orbitais na indústria de extração e refinio de petróleo, tanto na montagem de equipamentos quanto de linhas de transporte em plantas industriais, assim como nas indústrias farmacêutica, aeronáutica e alimentícia (SHIGLEY 1984).

A soldagem orbital é uma versão mecanizada do processo TIG. Na soldagem TIG manual o operador move a tocha e controla a corrente de solda. Na soldagem orbital é instalado um cabeçote de soldagem que se desloca ao redor do tubo através de uma cinta. O tubo permanece parado enquanto o cabeçote de soldagem circunda ou orbita ao longo da junta circunferencial até completar a soldagem (INFOSOLDA 2010), como ilustrado na Figura 3 - Eletrodo de tungstênio num movimento de translação ao redor de um tubo, com velocidade angular w (ARIMA 2003)
A principal justificativa para este investimento consiste: i) na maior produtividade, o que permite reduzir o tempo de montagem ou reparo; ii) na possibilidade de reproduzir soldas de excelente aspecto visual e livres de defeitos; iii) possibilidade de executar a soldagem onde o espaço físico disponível é limitado para uma soldagem manual.

O processo pode ser autógeno (sem a utilização de metal de adição) ou com consumível na forma de arame, que pode ser adicionado através de alimentador automático. A soldagem deve ser feita em atmosfera inerte para proteger o metal contra oxidação, geralmente utiliza-se Argônio ou mistura com outros gases para melhorar a eficiência de processo, como o N₂ e H₂ (INFOSOLDA 2010).
2.3 Fadiga

O limite de resistência determinado no ensaio de tração é função da carga máxima atingida durante o teste, após a qual ocorre a ruptura do material. Ficou então estabelecido que o material não se romperá com uma carga menor que aquela quando submetido a esforço estático. Entretanto, quando são aplicados esforços dinâmicos, repetidos ou flutuantes a um material metálico, o mesmo pode romper-se com uma carga inferior à carga máxima atingida na tração (ou na compressão) (SOUZA 1982).

Fadiga é um dano estrutural, localizado, progressivo e permanente que ocorre quando o material é submetido a deformações cíclicas ou flutuantes, geralmente a uma tensão nominal abaixo da tensão de escoamento. Três condições devem ser simultaneamente satisfeitas para a sua ocorrência: tensões cíclicas, tensões trativas e deformação plástica. As tensões trativas assim como as deformações podem ser apenas locais (FINE 1996).

Uma possível divisão dos estágios de fadiga é a seguinte (HOEPPNER, 1996):

- Nucleação (inigação de trincas de fadiga);
- Propagação de trincas curtas (“short crack” ou “small crack”);
- Propagação de trincas longas (podem ser caracterizadas através da mecânica da fratura);
- Fratura final.

Figura 4 - Ilustração esquemática do processo de soldagem TIG orbital. (ARCMACHINES 2010).
A nucleação de trincas pode ocorrer junto a defeitos internos do material (vazios, inclusões, etc.), mas ocorrem geralmente na superfície a partir de concentradores de tensões. Após sua nucleação, as trincas propagam até atingirem um tamanho crítico ocorrendo a falha do material ou componente.

A fase de propagação pode ser dividida em duas partes devido ao comportamento diferenciado de algumas trincas de dimensões muito reduzidas. Normalmente apresentam uma taxa de propagação superior àquela esperada. Pode-se considerar uma trinca fisicamente curta aquela que apresenta profundidade inferior a 1 mm (um milímetro) (AMERICAN SOCIETY FOR TESTING AND MATERIALS 2000).

O estudo da fadiga é importante porque a grande maioria das falhas de componentes de máquinas, em serviço, se deve à fadiga. E a ruptura por fadiga ocorre sem nenhum aviso prévio, ou seja, num dado momento a máquina está funcionando perfeitamente e, no instante seguinte, ela falha (TELECURSO 1995). Também é de se destacar que uma grande quantidade de parâmetros, tanto mecânicos quanto metalúrgicos afetam o desempenho em fadiga dos materiais e componentes em geral.

Wohler, apesar de não ter sido o primeiro a observar o fenômeno, foi o primeiro a desenvolver uma metodologia de estudo do mesmo entre 1852 e 1869. Ele criou a agora denominada curva S-N (Tensão contra Número de ciclos). Tais curvas são construídas traficando-se a tensão aplicada contra o número de ciclos para fratura em escala logarítmica. Tendo como base essas curvas pode-se comparar o desempenho de diferentes materiais para diversos níveis de carga. Nota-se, ainda, a existência de um limite de fadiga (tensão abaixo da qual o material não rompe por fadiga) para alguns materiais.
Ensaio de Fadiga

Um metal rompe por fadiga, quando a tensão cíclica, aplicada a ele, tem uma flutuação suficientemente grande e é maior que um valor característico de cada material, denominado limite de fadiga, o qual pode ser determinado mediante um ensaio de fadiga (SOUZA 1982).

Para o levantamento de curvas S-N é necessário o emprego de vários corpos de prova. Cada corpo de prova é submetido a um carregamento, geralmente senoidal, com amplitude constante, até que ocorra a fratura do mesmo ou até que seja atingido o número máximo de ciclos estipulado (runout em inglês). O número de corpos de prova utilizados depende da finalidade da curva a ser gerada e da variabilidade dos resultados. Para a determinação do número de níveis de amplitude a serem utilizados pode-se aplicar o conceito de replicação definida na Equação 3.

\[
\text{replicação}\% = 100 \left(1 - \frac{\text{número de diferentes níveis de tensão utilizados}}{\text{número total de corpos de prova ensaiados}}\right) \quad \text{Equação 3}
\]

A Tabela 2 adaptada da norma ASTM E739 mostra o número mínimo de corpos de prova e o valor de replicação recomendados de acordo com o tipo de ensaios conduzidos.

<table>
<thead>
<tr>
<th>Tipo De Ensaio</th>
<th>Número Mínimo De Corpos De Prova</th>
<th>Replicação Mínima (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminar</td>
<td>6 a 12</td>
<td>17 a 33</td>
</tr>
<tr>
<td>Pesquisa e Desenvolvimento De Componentes e Corpos de Prova</td>
<td>6 a 12</td>
<td>33 a 50</td>
</tr>
<tr>
<td>Dados Utilizáveis em Projeto</td>
<td>12 a 24</td>
<td>50 a 75</td>
</tr>
<tr>
<td>Dados com Confiabilidade Estatística</td>
<td>12 a 24</td>
<td>75 a 88</td>
</tr>
</tbody>
</table>

O modo de carregamento do material pode variar dependendo de vários fatores como finalidade do mesmo, forma em que este é disponível, assim como o equipamento para ensaio disponível. Os modos mais comuns são axial, flexão e flexão rotativa.

Vários parâmetros podem ser usados para descrever a magnitude das tensões aplicadas no ensaio, contudo são necessários apenas dois para descrever completamente um ciclo de fadiga com amplitude constante. Uma das combinações possíveis é: tensão máxima e razão de fadiga \((R = \sigma_{mínima}/\sigma_{máxima})\), outra seria: amplitude de tensão e tensão média. A Figura 5 apresenta um diagrama S-N com três curvas obtidas para diferentes razões de carregamento \((R)\).
Figura 5 - Diagrama S-N com três curvas obtidas para diferentes razões de carregamento.

(CAMERON 1996).
3.0 PROCEDIMENTO EXPERIMENTAL

Para o estudo em questão foi obedecida à sequência descrita no fluxograma abaixo para caracterização de solda em aço inoxidável super duplex em fadiga.

![Fluxograma](image)

Figura 6 - Fluxograma Para a Caracterização de Solda do Aço Inoxidável Super Duplex em Fadiga.

3.1 Equipamento do Ensaio De Fadiga Em Flexão

Os ensaios foram realizados em um equipamento servo-hidráulico, marca MTS com capacidade de 10 kN (em tração ou compressão), denominado ATU 10 (Figura 7), desenvolvido pelo Laboratório de Metalurgia Física (LAMEF) da Universidade Federal do Rio Grande do Sul.
A ATU 10 é formada por um conjunto de sistemas mecânicos (Figura 8) e um sistema de controle, interface entre operador e máquina.

O conjunto de componentes pode ser dividido nas seguintes partes:

- Pórtico de sustentação;
- Atuador hidráulico;
- Célula de carga;
- Mesa de fixação dos corpos de prova;
- Unidade de bombeamento hidráulica.
3.2 Equipamento do Ensaio de Fadiga Axial

Os ensaios de fadiga axial foram realizados em um equipamento servo-hidráulico, marca MTS, modelo 810, com capacidade de 100 kN (em tração ou compressão) (Figura 9).

A MTS 810 é formada por um conjunto de sistemas mecânicos (Figura 10) e um sistema de controle, interface entre operador e máquina.
Figura 9 - Apresentação da MTS 810

O conjunto de componentes pode ser dividido nas seguintes partes:

- Pórtico de sustentação;
- Atuador hidráulico;
- Célula de carga;
- Cabeçotes de fixação dos corpos de prova;
- Unidade de bombeamento hidráulica;
- Painel de controle manual (pórtico e de cabeçotes de fixação).
O sistema de controle e monitoramentos dos ensaios é realizado através de um conjunto de controladores digitais servo-hidráulicos MultiPurpose TestWare da MTS. Este Software tem como principal característica a interface gráfica de fácil entendimento e manuseio que permite o envio de dados de entrada necessários para o controle e execução do processo de tempo real.

Figura 10 - Descrição dos Componentes da MTS 810
3.3 Materiais Analisados

Os materiais analisados foram tubos de aço inoxidável Super Duplex (Figura 12-Material Analisado) utilizados nos umbilicais da Petrobras. As composições químicas dos tubos foram determinadas através de espectroscopia ótica, modelo SPECTRO, sendo realizadas três queimas no tubo de origem das amostras soldadas (Tabela 3), a fim de obter uma média aritmética como resultado final para comparação da composição química normalizada.
Figura 13 - Desenho Detalhado do Tubo Soldado (dimensionamento em milímetros)

Tabela 3 – Composição Química do Material de Estudo

<table>
<thead>
<tr>
<th>Amostra/elemento</th>
<th>C</th>
<th>Cr</th>
<th>Mo</th>
<th>Ni</th>
<th>Cu</th>
<th>Outros</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>0,0156</td>
<td>25,42</td>
<td>3,64</td>
<td>6,88</td>
<td>0,226</td>
<td>...</td>
<td><62,8</td>
</tr>
</tbody>
</table>

3.4 Ensaio de Flexão em Quatro Pontos

Os ensaios foram realizados em um equipamento servo-hidráulico, marca MTS, com capacidade de 10 kN em tração ou compressão (ATU 10) (Figura 7), onde os corpos de prova foram posicionados em um dispositivo (Figura 14) que restringe seus movimentos, diminuindo os graus de liberdade, simulando apenas os movimentos reais dos tubos, presentes nos umbilicais da Petrobras.
Os parâmetros adotados nos ensaios de fadiga em flexão em quatro pontos foram obtidos através do uso de extensometria em campo, e reproduzidos em laboratório. A geometria do dispositivo utilizado (Figura 14) simula o raio das bobinas onde são armazenados e transportados os tubos de aço para umbilicais obtendo os mesmo níveis de deformação da análise de campo.

A tabela abaixo apresenta os parâmetros utilizados no ensaio em laboratório:

<table>
<thead>
<tr>
<th>Fadiga De Baixo Ciclo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequência</td>
</tr>
<tr>
<td>Número de ciclos</td>
</tr>
<tr>
<td>Controle de deslocamento</td>
</tr>
</tbody>
</table>
3.5 Ensaio de Fadiga Axial

Os ensaios foram realizados em um equipamento servo-hidráulico, marca MTS, com capacidade de 100 kN em tração ou compressão (MTS 810) (Figura 9), onde os corpos de prova foram divididos em três níveis de carregamentos diferentes e submetidos à fadiga axial de alto ciclo em dispositivo com fixação por garras hidráulicas (Figura 15) que restringe os graus de liberdade do sistema, simulando apenas os esforços de interesse para o estudo.

![Figura 15 - Dispositivo para Ensaio de Fadiga Axial](image)

Parâmetros do Ensaio

Os parâmetros adotados nos ensaios de fadiga axial foram obtidos através do uso de extensometria em campo, e reproduzidos em laboratório. O dispositivo utilizado (Figura 15) permite concentrar os esforços sofridos pelo componente, na região de interesse (junta soldada), após sofrer um certo nível de deformação acumulada pelo ensaio de fadiga em flexão para o estudo da vida em fadiga da junta soldada em três carregamentos diferentes em fadiga axial com frequência de 30 Hz.

A Tabela 4 apresenta os parâmetros utilizados no ensaio em laboratório:
Tabela 4 - Parâmetros Utilizados nos Ensaios de Fadiga Axial

<table>
<thead>
<tr>
<th>CP’s</th>
<th>Nível de Carregamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI_027_09_15</td>
<td></td>
</tr>
<tr>
<td>SI_027_09_16</td>
<td></td>
</tr>
<tr>
<td>SI_027_09_17</td>
<td>28250 N</td>
</tr>
<tr>
<td>SI_027_09_18</td>
<td></td>
</tr>
<tr>
<td>SI_027_09_19</td>
<td></td>
</tr>
<tr>
<td>SI_027_09_28</td>
<td></td>
</tr>
<tr>
<td>SI_027_09_38</td>
<td>22600 N</td>
</tr>
<tr>
<td>SI_027_09_39</td>
<td></td>
</tr>
<tr>
<td>SI_027_09_36</td>
<td>16950 N</td>
</tr>
</tbody>
</table>

3.6 Análise de Falha

Para a análise de falha, foi obedecida à sequência descrita no fluxograma da Figura 16 para todos os corpos de prova que falharam por fratura.

![Fluxograma da Análise de Falha](image-url)
3.6.1 Análise da Superfície de Fratura na Lupa

Nesta etapa foram analisadas as superfícies de fratura dos CP’s, na tentativa de localizar ponto ou pontos de origem de falha, facilitando e/ou direcionando, na sequência, a análise no MEV.

O conjunto de imagens (Figura 17 - Superfície de Fratura CP - SI_027_09_17, Figura 18) apresenta as superfícies de fratura dos corpos de prova submetidos ao nível de carregamento de 28250 N, identificados por SI_027_09_17, SI_027_09_19.

Figura 17 - Superfície de Fratura CP - SI_027_09_17

Figura 18 - Superfície de Fratura CP - SI_027_09_19

O conjunto de imagens (Figura 19, Figura 20) apresentam as superfícies de fratura dos corpos de prova submetidos ao nível de carregamento de 22500 N, identificados por SI_027_09_28, SI_027_09_38.
Figura 19 - Superfície de Fratura CP - SI_027_09_28

Figura 20 - Superfície de Fratura CP - SI_027_09_38

3.6.2 Análise da Superfície de Fratura em MEV

As análises das superfícies de fratura foram realizadas no Microscópio Eletrônico de Varredura (MEV), marca Shimadzu, modelo SSX 550, mostrado na Figura 21.
Localizados os pontos críticos com auxílio da lupa, foram realizados análises em MEV na tentativa de evidenciar o local de início das falhas. Regiões de fraturas dúcteis, fraturas frágeis e estrias também foram evidenciadas nas imagens.

O conjunto de imagens nas figuras (Figura 22, Figura 23, Figura 24 e Figura 25) apresentam as superfícies de fratura dos corpos de prova submetidos ao nível de carregamento de 28250 N, identificados por SI_027_09_17, SI_027_09_19.
Figura 23 - Esquerda: a região apresenta modo de fratura frágil representada pelos "dimples"; direita: apresenta modo de transição de fratura dúctil-frágil.

Figura 24 - Superfícies de Fratura do CP – SI_027_09_19 (esquerda: visão geral da área de falha; direita: região de nucleação da falha)

O conjunto de imagens nas figuras (Figura 26, Figura 27 e Figura 28) apresenta as superfícies de fratura dos corpos de prova submetidos ao nível de carregamento de 22600 N, identificados por SI_027_09_28, SI_027_09_38.

Figura 26 - Superfície de Fratura do CP - SI_027_09_28.

Figura 27 - Superfície de fratura do CP - SI_027_09_39 (região apresentando modo de fratura dúctil representado pelos “dimples”).
Figura 28 - Superfície de fratura do CP - SI_027_09_39 (região apresentando modo transição de fratura dúctil-frágil representado pelas “quase” clivagens).

3.6.3 Metalografia

Para a metalografia, as amostras sofreram um corte transversal na junta soldada (próxima à região de falha do componente), na sequência foram lixadas obedecendo à sequência de lixas ideal (120, 200, 320, 400, 600, 1200), polidas utilizando pasta diamantada (4 microns e 1 micron) e atacadas com reagente específica para aços inoxidáveis superduplex. Para revelar a microestrutura do metal de base foi realizado ataque eletrolítico com ácido oxálico 10% e para revelar microestrutura do metal fundido foi realizado ataque a quente (80º a 100º) com Murakamis.

As figuras (Figura 29, Figura 30, Figura 31) mostram os equipamentos utilizados para preparação metalográfica das amostras e suas especificações.

Figura 29 - Esquerda: cortadeira metalográfica Skill-Tec CSK 80; Direita: Cinta Lixa (Opera com lixa granulométrica 80)
3.6.4 Análise Microestrutural

Posterior a preparação metalográfica, as amostras foram examinadas através de microscopia óptica, visando identificar e caracterizar as microestruturas do metal de base e a microestrutura que sofreu modificações pelo processo de soldagem a que foi submetida e influência da fadiga nesta. As observações foram realizadas nas regiões do metal base, do metal de fusão e regiões intermediárias a estas, englobando-se assim a ZAC. As imagens das microestruturas foram obtidas com o auxílio de um microscópio óptico.
3.6.5 Perfil de Microdurezas

A mesma superfície preparada para as análises metalográficas foi utilizada para a realização dos perfis de microdureza Vickers, aplicando uma carga de 300 gramas. O levantamento destes perfis tem como objetivo à avaliação das propriedades mecânicas da solda bem como regiões vizinhas (ZAC) em termos de microdureza, além de desempenhar função preponderante na caracterização microestrutural.

A fim de comparar as influências decorrentes da soldagem utilizada e dos diferentes níveis de carregamentos empregados nos ensaios de fadiga axial (CP’s ensaiados a 28250 N e 22600 N), foram realizadas varreduras na superfície das amostras, onde observou-se o perfil de microdureza desde o metal base até a região do metal de fusão.
4.0 RESULTADOS E DISCUSSÃO

4.1 Considerações Iniciais

Neste capítulo são apresentados e discutidos os resultados obtidos com base nos estudos realizados. A sequência de apresentação dos resultados segue a mesma ordem de realização do estudo, apresentando primeiramente um estudo da vida em fadiga do componente, caracterização metalográfica e ensaios de microdureza Vickers.

4.2 Vida em Fadiga

Observa-se o aumento da vida em fadiga do componente com a diminuição da carga aplicada no carregamento, até chegar ao seu limite de fadiga, onde supostamente o componente tem vida “infinita”, como observado no carregamento de menor carga (16950 N).

![Figura 32 - Diagrama S-N resultante dos ensaios.](image-url)
4.3 Caracterização Metalográfica

As metalografias obtidas ao longo da seção longitudinal dos tubos, na região da junta soldada referentes aos corpos de prova SI_027_09_17, SI_027_09_19, SI_027_09_28, SI_027_09_30, são representados nas figuras abaixo (Figura 33, Figura 34 e Figura 35).

Como todos os CP’s apresentaram as mesmas características metalográficas (microestrutura do MB, ZAC e no MS), as figuras (Figura 33, Figura 34, Figura 35) são apenas as mais representativas.

Figura 33 - Microestrutura do metal de base característico dos AISD (50% ferrita e 50% austenita); Esquerda: ataque com ácido oxálico 10%; Direita: ataque com Murakamis.

Figura 34 - Microestrutura da região de transição entre o metal de base e o metal de fusão; Ataque com Murakamis.
Figura 35 – Morfologias da Ferrita no metal de fusão em matriz Austenítica; (A) Ataque com Murakamis; (B) Ataque com Murakamis; (C) Ataque com Ácido Oxálico 10 %; (D) Ataque com Ácido Oxálico 10 %.

4.4 Ensaio de Microureza Vickers

O processo de soldagem TIG orbital, resultou em grandes mudanças na morfologia da ferrita e na proporção entre as fases presentes na microestrutura do aço inoxidável super duplex (quando comparados ao MB), e por consequência, alterando as propriedades mecânicas nesta região.

Estas alterações podem ser percebidas pela análise do perfil de microureza Vickers (HV) ao longo do da seção longitudinal do componente na região de estudo que abrange MB, ZAC e MS, mostrados nas Figura 36 e Figura 37.
Figura 36 - Esquerda: Microdureza HV do CP SL_027_09_17; Direita: Microdureza HV do CP SL_027_09_19

Figura 37 - Esquerda: Microdureza HV do CP SL_027_09_28; Direita: Microdureza HV do CP SL_027_09_38
5.0 CONCLUSÕES

Os resultados apresentados neste trabalho permitem as seguintes conclusões:

- Mesmo sendo empregado um processo de soldagem TIG que apresenta uma baixa energia de soldagem, as transformações microestruturais (mudanças na morfologia da ferrita e desequilíbrio entre as fases presentes) favoreceram a diminuição da vida em fadiga do componente;

- A formação de ferritas com morfologias e orientações diferentes na ZAC e no MS diminuíram a resistência mecânica do componente, pois quando comparadas ao MB, onde as ferritas se encontravam alinhadas no sentido de aplicação do carregamento, estas se tornam regiões onde à formação de danos estruturais é favorecida.

- Efeito do carregamento na vida em fadiga é nitidamente observado, onde quanto maior o carregamento, menor a ciclagem do componente até seu rompimento, e de maneira análoga, com carregamento abaixo de 16950 N, conforme visto nos resultados, o componente tem “vida infinita”.
6.0 SUGESTÕES PARA TRABALHOS FUTUROS

Sugestões de trabalhos futuros a serem realizados a partir dos estudos obtidos:

- Desenvolver novos estudos comparativos, da vida em fadiga de tubos de aço inoxidável super duplex apresentando união pelo processo de soldagem TIG Orbital e o mesmo tubo sem apresentar soldadura;
- Repetir os estudos analisando amostras de tubos após bobinamento e manuseio, reproduzidos pelos ensaios de flexão em fadiga;
7.0 REFERÊNCIAS BIBLIOGRÁFICAS

ASM Metals HandBook Volume 6 - Welding, Brazing, and Soldering. 1993

ASM Specialty handbook “stainless steel”. Ohio: American Society for Metals; 1994

MACHADO, I. G. Soldagem A Arco Com proteção por gás e eletrodo não consumível (“TIG”). In: Soldagem & Técnicas Conexas. 1996

