Redução dos Níveis de Cromo em Águas Residuais Utilizando Saccharomyces Cerevisiae como Bioadsorvente

Felipe Andreis

Orientadora: Profª Drª Isabel Cristina Tessaro

Porto Alegre, Julho de 2011
Felipe Andreis

Redução dos Níveis de Cromo em Águas Residuais Utilizando *Saccharomyces Cerevisiae* como Bioadsorvente

Trabalho apresentado como requisito parcial para obtenção do grau de Engenheiro Químico, pela Escola de Engenharia da Universidade Federal do Rio Grande do Sul.

Orientadora:

Profª Dra Isabel Cristina Tessaro
AGRADECIMENTOS

À minha orientadora, professora Dra. Isabel Cristina Tessaro, pela inestimável ajuda, apoio, paciência e tempo despendidos não só durante o trabalho de conclusão, mas durante toda a graduação.

À professora Dra. Liliana Amaral Feris e à Natália, pela ajuda na parte experimental.

À UFRGS e todos os funcionários do Departamento de Engenharia Química, em especial Tatiana, Eduardo e Marcos que foram de grande contribuição para a realização deste trabalho.

À minha madrinhã Therezinha Andreis, que sempre foi uma das minhas maiores incentivadoras.

Aos meus pais, Mario e Sonia, por me proporcionarem condições e me darem apoio nas mais diversas situações.

À minha futura esposa Tatiana, por sempre estar ao meu lado e à disposição nas diversas etapas que passamos juntos.
SUMÁRIO

1 INTRODUÇÃO .. 1

2 REVISÃO BIBLIOGRÁFICA E FUNDAMENTAÇÃO TEÓRICA 3

2.1 ADSORÇÃO .. 3

2.1.1 MODELOS DE ADSORÇÃO ... 4

ISOTERMA DE LANGMUIR .. 5

ISOTERMA DE FREUNDLICH .. 5

2.1.2 ADSORVENTES ... 6

2.1.3 RESÍDUOS COMO ADSORVENTES ... 7

2.2 LEI DE BEER .. 8

3 MATERIAIS ... 9

3.1 LEVEDURA .. 9

3.2 REAGENTES ... 9

3.3 EQUIPAMENTOS ... 10

4 METODOLOGIA .. 13

4.1 PREPARAÇÃO DA SOLUÇÃO DE CROMO E DETERMINAÇÃO DO TEOR DE
CROMO ... 13

SOLUÇÃO SINTÉTICA DE CROMO ... 13

ELABORAÇÃO DA CURVA DE CALIBRAÇÃO ... 13

DESENVOLVIMENTO DA COR .. 14

PREPARO DA SOLUÇÃO DE DIFENILCARBAZIDA .. 15
LISTA DE FIGURAS

Figura 3.1: Agitador tipo Wágner. .. 12
Figura 4.1: Soluções de Cromo utilizadas para elaboração da curva de calibração......................... 14
Figura 4.2: Soluções em diferentes etapas de desenvolvimento da cor. ... 15
Figura 4.3: Levedura após secagem. .. 16
Figura 5.1: Curva de calibração relacionando o teor de Cromo total com a absorbância.............. 20
Figura 5.2: Redução da concentração de Cromo nas melhores condições experimentais e análise do tempo de residência... 25
Figura 5.3: Soluções antes da centrifugação. .. 25
Figura 5.4: Soluções após a centrifugação. .. 26

LISTA DE TABELAS

Tabela 3.1: Relação de reagentes químicos utilizados... 10
Tabela 3.2: Relação de equipamentos utilizados. .. 11
Tabela 4.1: Experimentos realizados com suas respectivas condições de operação................. 17
Tabela 5.1: Leituras de absorbância de soluções com concentrações definidas de Cromo obtidas para a construção da curva de calibração. ... 19
Tabela 5.2: Teor de Cromo em solução para os testes de adsorção com 2 g de adsorvente, em diferentes pHs e as respectivas leituras de absorbância... 21
Tabela 5.3: Teor de Cromo remanescentes em solução para os testes de adsorção com diferentes massas de adsorvente, em pH 3,7 durante 30 minutos e as respectivas leituras de absorbância... 22
Tabela 5.4: Teor de Cromo remanescente em solução para os testes de adsorção com 3 g de adsorvente e pH 2 em diferentes concentrações de Cromo na solução inicial e as respectivas leituras de absorbância... 24
RESUMO

Técnicas para melhorar a qualidade de resíduos industriais se fazem cada vez mais necessárias e importantes, pois as legislações ambientais estão mais severas visando um efluente não tão agressivo a ser despejado no ambiente. Também a necessidade de mostrar consciência ambiental nas indústrias vem aumentando, pois muitas vezes são classificadas com selos de qualidade ambiental e certificações, tão necessários para alcançar uma boa visão sobre seus produtos.

Ao mesmo tempo, técnicas de reutilização de resíduos dos processos são muito mais importantes do que simplesmente armazená-los de forma adequada, tanto pelo risco que este volume de resíduo gera para a empresa (visto que mesmo em aterros específicos a empresa geradora continua responsável por este resíduo), quanto pela exigência cada vez maior dos consumidores com técnicas de produção mais limpas.

Este trabalho apresenta uma técnica de reutilização do resíduo de levedura do processo de fermentação alcoólica, para diminuir os níveis de Cromo em efluentes industriais. O Cromo na sua forma hexavalente é conhecido como carcinogênico e mesmo após a redução para Cromo trivalente, sua toxicidade no ambiente é alta, fazendo com que as legislações ambientais limitem estes componentes a baixíssimas quantidades.

Estima-se que, após a bioadsorção de Cromo pelas leveduras, ocorrerá a diminuição do volume de lodo a ser descartado em despejos industriais, bem como atingir as especificações do efluente a ser devolvido do tratamento, diminuindo o custo não só do tratamento, por se utilizar outro resíduo para o processo, bem como diminuir os custos com o despejo deste lodo.
1 INTRODUÇÃO

O Cromo é largamente utilizado em indústrias químicas, principalmente nas indústrias de galvanoplastia e de curtimento de couro. E tanto pelo tratamento com excesso de Cromo como por falta de tratamento adequado deste efluente antes de ser despejado, podem ocorrer lançamentos em corpos hídricos naturais.

O Cromo pode ser encontrado de duas formas predominantes: em solução, a forma trivalente e a forma hexavalente, sendo esta última reconhecida como carcinogênica. Atualmente o limite máximo fixado pela Portaria número 1.469/2000 do Ministério da Agricultura, é de 0,05 mg/L. Os resíduos das indústrias de curtimento de couros chegam a ter teores maiores que 1 g/L, ou seja, um valor vinte mil vezes maior que o permitido.

Os tratamentos alternativos de efluentes que apresentam bons rendimentos na remoção do Cromo são, em sua maioria, complexos e caros. A adsorção é, normalmente, a técnica aplicada industrialmente, utilizando carvão ativado como adsorvente. Uma limitação desta técnica é o custo associado ao adsorvente, que em muitos casos tem que sofrer uma preparação anterior para melhorar o rendimento e, além disso, a regeneração pode ser complexa. Isto faz com que, muitas vezes, o efluente deixe o tratamento aplicado pela indústria sem atender os limites especificados na legislação.

A utilização de adsorventes alternativos, principalmente os considerados de baixo custo, pode melhorar, e muito, a relação custo benefício deste processo. Além disso, os valores limites estipulados na legislação ambiental podem ser atingidos com um gasto menor de recursos.

Estudos de adsorção em batelada podem ser realizados a partir do contato entre uma determinada massa de material adsorvente e certo volume de solução, contendo certo soluto em concentração inicial. Desta forma é possível obter, após o equilíbrio de adsorção ser atingido, a concentração final deste soluto na solução. Ou ainda, em um determinado tempo de ensaio, podemos determinar o percentual de redução deste soluto por adsorção.

No caso do uso da levedura excedente do processo de fermentação alcoólica de cervejarias, pode-se obter uma boa relação custo-benefício se o processo apresentar resultados
satisfatórios do ponto de vista ambiental. A levedura esgotada oriunda do processo de fermentação alcoólica de cervejarias é um resíduo industrial, que possui uma alta demanda biológica de oxigênio (DBO), sendo responsável por até sessenta por cento do valor deste indicador em efluentes provenientes de cervejarias. Além disso, essa levedura não tem valor comercial para os seus geradores, e acabam, inclusive, aumentando os custos no processo destas empresas. Como o Brasil é um grande produtor de bebidas e combustíveis através de fermentação alcoólica, a quantidade de levedura esgotada que pode ser utilizada em tais processos é alta. Conseqüentemente, o custo para essas empresas pode diminuir, pois seu efluente altamente poluente se transforma na matéria prima para o processo de adsorção de contaminantes.

O objetivo principal deste trabalho, então, é definir as melhores condições de trabalho para que a levedura esgotada proveniente do processo de fabricação de cerveja venha a ser utilizada como adsorvente do Cromo de águas residuais.
2 REVISÃO BIBLIOGRÁFICA E FUNDAMENTAÇÃO TEÓRICA

Neste capítulo será apresentada uma revisão bibliográfica e os fundamentos teóricos relativos à adsorção, seus modelos mais comuns, bem como os tipos mais comuns de adsorventes. Também será discutida a possibilidade do uso de adsorventes alternativos oriundos de resíduos da indústria, suas características e seus benefícios.

2.1 ADSORÇÃO

Adsorção é o termo usado para descrever o fenômeno onde moléculas de um fluido interagem com a superfície de um sólido, neste processo ocorre a transferência de massa entre sólidos e soluções que contêm solutos dissolvidos ou até mesmo em suspensão. Neste processo, aproveita-se a habilidade de determinados sólidos de concentrar em sua superfície moléculas presentes na corrente fluida, para isso a área superficial disponível para adsorção deve ser grande, isto é, a sua porosidade deve ser elevada.

A adsorção está intimamente ligada à tensão superficial das soluções e a intensidade deste fenômeno depende da temperatura, da natureza e da concentração da substância adsorvida, da natureza e estado de agregação do adsorvente e do fluido em contato com o adsorvente.

Considerando que a tensão superficial é um fenômeno de superfície, então a influência do soluto na tensão superficial de uma solução dependerá da maior ou menor concentração deste soluto na superfície da solução. Quanto maior a presença de soluto na superfície da solução, menor a tensão superficial da solução e mais facilmente o soluto será adsorvido pelo sólido.

Segundo Weber et al. (1991) as forças intermoleculares envolvidas na adsorção classificam o processo, podendo estes fenômenos adsorptivos serem classificados como adsorção física - fisissorção - mais fraca, reversível, com ligações por atração de Van der Waals, liberando pouca energia e atingindo rapidamente o equilíbrio, que constitui o princípio da maioria dos processos de purificação e separação, ou adsorção química – quimiossorção –
ligação forte, irreversível e com grande energia liberada, com ligação química entre adsorvente e adsorbato.

De acordo com Inglezakis et al. (2002) o equilíbrio de adsorção depende, principalmente, da temperatura do sistema, da concentração inicial da solução do tipo e concentração do material adsorvente e do pH do meio. Um fator importante é em relação à superfície do adsorvente, quanto mais finamente dividido estiver este adsorvente, maior será a sua eficiência em adsorver as moléculas presentes na solução.

Uma aplicação importante para o processo de adsorção é a remoção de metais pesados de águas residuais, pois se sabe que a adsorção tem grande efetividade na remoção destes compostos.

O estudo em questão é a purificação da solução, adsorvendo o Cromo com a levedura e diminuindo sua concentração na solução que será despejada posteriormente, mas esta propriedade pode também ser utilizada para recuperar no adsorvente as moléculas que forem adsorvidas, no caso de serem moléculas desejáveis.

Bem como foi escolhida a levedura esgotada para ser o adsorvente, pois é um material finamente dividido, que facilmente fica em suspensão, não necessitando uma agitação tão vigorosa, mas também por ser um resíduo de outra indústria.

2.1.1 MODELOS DE ADSORÇÃO

Uma isoterma de adsorção é a relação, a uma dada temperatura, entre a quantidade de espécie adsorvida na superfície e a concentração de equilíbrio da mesma na solução. As isotermas podem ser obtidas experimentalmente e representadas de forma gráfica para um determinado componente.

Para modelos com concentrações baixas, as isotermas tendem a aproximar os parâmetros na forma linear de acordo com a Lei de Henry (Cooney, 1999).

Segundo Oliveira (2006), diversos pesquisadores propõem, a partir de dados obtidos experimentalmente, expressões matemáticas que se ajustam a diferentes curvas isotérmicas
nas condições de operação. Os modelos mais aplicados atualmente para o ajuste dos dados são a Isoterma de Langmuir e a Isoterma de Freundlich.

ISOTERMA DE LANGMUIR

Segundo Dabrowski (2001), os fundamentos propostos pelo modelo de Langmuir foram desenvolvidos para processos de quimiosorção e, com algumas restrições, para fisiosorção.

Inicialmente, esta teoria foi usada para adsorção de moléculas de gás sobre superfícies metálicas (McKay et al., 1982) apud (Taffarel, 2010).

Este modelo segue as seguintes hipóteses:

- as moléculas são adsorvidas e aderem na superfície do adsorvente em sítios ativos definidos e localizados;
- cada sítio ativo pode acomodar uma única espécie adsorvida (monocamada);
- a energia da espécie adsorvida é a mesma em todos os sítios da superfície e não depende da presença de outras espécies em sítios vizinhos (Ciola, 1981) apud (Taffarel, 2010).

Para casos em que a adsorção ocorre em fase líquida, a isoterma de Langmuir é representada por uma equação, que pode ser rearranjada para obtermos a forma linearizada, onde plotando estes dados podemos encontrar os parâmetros de Langmuir.

Apesar de várias limitações, o modelo de Langmuir tem sido muito utilizado nos estudos de adsorção devido a sua simplicidade e conveniência na determinação da capacidade de adsorção (Taffarel, 2010).

ISOTERMA DE FREUNDLICH

A equação de Freundlich foi desenvolvida com o objetivo de suprir a limitação da equação de Langmuir de assumir que a adsorção em um ponto da superfície do sólido adsorvente não influencia na adsorção do ponto vizinho e que cada sítio pode reter somente
uma unidade do adsorbato, sendo que na realidade o calor de adsorção depende da concentração de adsorbato na fase sólida.

O modelo da isoterma de Freundlich é aplicado normalmente, em processos de adsorção em monocamada (quimiosorção), adsorção em multicamada (adsorção envolvendo forças de van der Waals) e adsorção em superfícies que não apresentam completa homogeneidade (Yang, 1998).

O processo de determinação ocorre de maneira análoga a isoterma de Langmuir, a equação que descreve a isoterma de Freundlich, pode ser rearranjada obtendo-se a forma linearizada e com a equação da reta dos pontos plotados encontramos seus parâmetros.

A desvantagem desta isoterma empírica é que ela não se reduz a Lei de Henry a concentrações próximas de zero (Fritz e Schlünder, 1981) e sua aplicabilidade é restrita a um intervalo de concentração limitado.

2.1.2 ADSORVENTES

Para que um adsorvente tenha uma grande capacidade adsortiva, deve apresentar uma grande área superficial e estrutura altamente porosa, sendo as propriedades adsortivas dependentes do tamanho dos poros, da distribuição dos poros e da natureza da superfície sólida. Segundo Dabrowski (2001), os sólidos porosos mais representativos são o carvão ativado e as zeólitas. Em escala industrial, estes são os adsorventes mais utilizados atualmente.

O carvão ativado geralmente é obtido através da decomposição térmica de material carbonáceo seguido pela ativação com vapor ou dióxido de carbono em temperaturas elevadas. Sua superfície possui afinidade com substâncias de caráter orgânico, conferindo-lhe sua principal aplicação atualmente, que é a descontaminação de água destinada ao consumo humano. Atualmente, modernas técnicas de ativação produzem uma peneira molecular de carvão, que está sendo utilizada em larga escala na separação de gases.

As peneiras moleculares são em sua grande maioria zeólitas, termos que eram sinônimos até o surgimento de outras peneiras moleculares, como as alumino fosfatadas e as
de carvão. Zeólitas são aluminossilicatos de estrutura cristalina e porosa, podendo ser naturais ou sintetizadas em laboratórios. O surgimento deste material gerou grande impulso nos processos de separação por adsorção, pois como apresentam tamanho de poro bem definido, podem ser seletivos à adsorção de moléculas, podendo ser aplicadas para moléculas específicas. Também com a possibilidade de ajustar as dimensões dos poros e as propriedades destas zeólitas, a amplitude de usos e a separação altamente seletiva são grandes avanços.

2.1.3 RESÍDUOS COMO ADSORVENTES

Muitos estudos estão sendo realizados para reaproveitar resíduos como adsorventes, em sua maioria, estes estudos estão testando principalmente resíduos orgânicos pós-consumo, como casca de coco, casca de banana, serragem de madeira, bagaço de cana e sabugo de milho.

Estudos realizados com a casca de coco mostraram redução total de metais pesados em efluentes industriais, porém o coco tem sazonalidade o que limita o seu uso contínuo e consequentemente este trabalho, pois o objetivo é facilitar a redução dos níveis de Cromo tanto pela simplicidade do processo como pelo seu baixo custo e demanda considerável.

Segundo Gonçalves Júnior et al. (2009), a biomassa seca de aguapé (*Eichornia crassipes*) possui capacidade de adsorção e remoção dos metais Cádmio, Chumbo, Cromo, Cobre e Zinco, em soluções contaminadas. Esta conclusão partiu de um estudo utilizando esta biomassa seca de aguapé, destacando a redução de Cromo do efluente, que foi em média 65%.

Segundo Silva et al. (2007) o uso de leveduras *Saccharomyces Cerevisiae*, foi efetiva em adsorver o Chumbo em águas residuais, chegando a adsorver 1487 mg/g de adsorvente.

Outro estudo, utilizou resíduos industriais de curtumes, na forma de serragem e com grande concentração de Cromo, para adsorver corantes em meio aquoso. Segundo Dallago et al. (2005) estes resíduos, encontrados abundantemente em curtumes, apresentaram elevada capacidade de adsorção, similar à do carvão ativado.

A tendência é que muitos estudos neste âmbito sejam ainda realizados, pois com a necessidade cada vez maior das empresas se adaptarem às legislações que regem o
lançamento de efluentes. No entanto, o custo é o maior empecilho para sua realização, por isso os adsorventes de baixo custo, como por exemplo, outros resíduos que não têm nenhum destino comercial, são as melhores alternativas para as empresas se adequarem às normas sem estar elevando os custos do processo, consequentemente sem a necessidade de repassar este custo ao consumidor final, que será beneficiado duas vezes, uma em relação ao custo e outra em relação ao meio ambiente.

2.2 LEI DE BEER

A lei de Beer, ou Beer-Lambert, é uma relação empírica que relaciona a absorção de luz com as propriedades do material atravessado por esta luz. Esta lei explica que há uma relação exponencial entre a transmissão de luz através de uma solução e a concentração desta solução. Logo, conhecendo o comprimento de onda para a leitura da absorbância e elaborando uma curva de calibração, é possível determinar pela espectrofotometria a concentração final da solução.

No caso do experimento, após o tratamento da solução de Cromo, para adsorção por leveduras esgotadas, podemos mensurar a redução dos níveis de Cromo ao final do procedimento.

Esta lei tende a não ser válida em concentrações muito elevadas, então se aplica o conceito em uma curva de calibração que relaciona absorbância versus concentração sempre em soluções bem diluídas.
3 MATERIAIS

Neste capítulo será apresentada a relação dos equipamentos e reagentes químicos utilizados para a realização dos experimentos de adsorção do Cromo por leveduras, bem como as suas características e etapas de utilização.

3.1 LEVEDURA

A levedura utilizada nos procedimentos foi a *Saccharomyces Cerevisiae*, de nome comercial Safale US - 05, marca Fermentis, onde um envelope de 11,5 g foi utilizado em duas bateladas de fermentação alcoólica da fabricação de cerveja, sendo assim considerada esgotada e classificada como resíduo. Esta levedura esgotada foi seca em uma secadora de alimentos por quinze horas a uma temperatura média de 40ºC. A levedura não apresentou diferenças no pH quando esteve em suspensão durante o tempo de ensaio, mantendo-se em 4,3, por isso, ela foi adicionada sempre após a correção do pH da solução para o pH desejado.

3.2 REAGENTES

Todas as soluções foram preparadas com os reagentes listados na Tabela 3.1 e água destilada. Os frascos e vidrarias utilizados foram higienizados antes e depois do experimento com enxágue de água destilada, ambientados antes do uso e guardados separadamente para não ocorrerem quaisquer contaminações.

A Tabela 3.1 também apresenta as fórmulas dos reagentes, o fornecedor e em que etapas em que foram utilizados.
Tabela 3.1: Relação de reagentes químicos utilizados.

<table>
<thead>
<tr>
<th>Reagente</th>
<th>Fórmula</th>
<th>Marca</th>
<th>Utilização</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5 Difenilcarbazida</td>
<td>C_{13}H_{14}N_{4}O</td>
<td>VETEC</td>
<td>Preparo da solução de Difenilcarbazida que desenvolvia a cor violeta nas amostras contendo Cromo hexavalente</td>
</tr>
<tr>
<td>Acetona PA</td>
<td>C_{3}H_{6}O</td>
<td>Proton Química</td>
<td>Diluição da 1,5 Difenilcarbazida</td>
</tr>
<tr>
<td>Ácido Fosfórico PA</td>
<td>H_{3}PO_{4}</td>
<td>Proton Química</td>
<td>Preparo da solução de Cromo antes da reação com Difenilcarbazida</td>
</tr>
<tr>
<td>Ácido Sulfúrico PA</td>
<td>H_{2}SO_{4}</td>
<td>Fmaia</td>
<td>Acidificação da solução para faixa de pH ótimo para obtenção da cor violeta e acidificação da solução para testes de pH</td>
</tr>
<tr>
<td>Dicromato de Potássio</td>
<td>K_{2}Cr_{2}O_{7}</td>
<td>Fmaia</td>
<td>Preparo das soluções sintéticas de Cromo</td>
</tr>
<tr>
<td>Hidróxido de Sódio</td>
<td>NaOH</td>
<td>Fmaia</td>
<td>Alcalinização da solução de Cromo para testes de pH</td>
</tr>
</tbody>
</table>

3.3 EQUIPAMENTOS

Todos os equipamentos utilizados visaram tornar o processo mais rápido, e quase todas as etapas podem ser efetuadas sem estes equipamentos para serem aplicados em grande escala, sem acontecer nenhuma alteração significativa, apenas a agitação da levedura em suspensão na solução deveria ser mantida para melhorar a interface adsorvente-solução. Na Tabela 3.2 estão apresentados os equipamentos utilizados, a sua marca e em que etapa do trabalho em que foram empregados.
Tabela 3.2: Relação de equipamentos utilizados.

<table>
<thead>
<tr>
<th>Equipamento</th>
<th>Marca</th>
<th>Utilização</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agitador tipo Wágner</td>
<td>MARCONI</td>
<td>Agitação das soluções de Cromo acrescidas da levedura para os ensaios de adsorção.</td>
</tr>
<tr>
<td>Centrífuga Refrigerada CT-5000R</td>
<td>CIENTEC</td>
<td>Clarificação da solução de Cromo resultante através da separação da levedura em suspensão.</td>
</tr>
<tr>
<td>pHmetro DM-20</td>
<td>DIGIMED</td>
<td>Medidas de pH nos testes de diferenças de pH e para ajustes de pH ótimo de desenvolvimento da cor.</td>
</tr>
<tr>
<td>Secadora de Alimentos SL 102/100</td>
<td>SOLAB</td>
<td>Secagem da levedura.</td>
</tr>
<tr>
<td>UV-Visible Spectrophotometer Cary 1-E</td>
<td>VARIAN</td>
<td>Leitura das absorbâncias das soluções de Cromo após reação com a Difenilcarbazida.</td>
</tr>
</tbody>
</table>

Na Figura 3.1 podemos ver o agitador de Wágner utilizado para os experimentos, no momento de uso.
Figura 3.1: Agitador tipo Wängler.
4 METODOLOGIA

Neste capítulo é apresentado como foram conduzidos os experimentos, descrevendo cada etapa do processo e suas condições de operação.

4.1 PREPARAÇÃO DA SOLUÇÃO DE CROMO E DETERMINAÇÃO DO TEOR DE CROMO

A metodologia de preparo da solução sintética de Cromo e de leitura da concentração de Cromo foi obtida a partir do Standard Methods, na seção 3500-Cr CHROMIUM, que permite optar entre o método colorimétrico, que foi o escolhido para as análises neste trabalho, e o método de cromatografia de íons.

A seguir, são apresentados as descrições exatas de cada etapa do processo.

SOLUÇÃO SINTÉTICA DE CROMO

A solução sintética de Cromo utilizada neste trabalho foi preparada a partir de Dicromato de Potássio, onde, no total, 424,2 mg deste reagente foram dissolvidos em 300 mL de água destilada, formando assim, uma solução com 500 ppm de Cromo.

A partir desta solução foram feitas as diluições para se obter os pontos da curva de calibração. Essa solução também foi utilizada para a preparação das soluções de concentrações conhecidas utilizadas nos experimentos, variando as alíquotas da solução inicial de 500 ppm para os volumes e concentrações necessárias.

CONSTRUÇÃO DA CURVA DE CALIBRAÇÃO

Nesta etapa, quinze soluções com diferentes concentrações de Cromo foram preparadas para elaboração da curva de calibração. A Figura 4.1 mostra os primeiros dez pontos, que estão dentro da faixa linear obtida da literatura, os outros cinco pontos foram
testados para conseguirmos extrapolar a faixa linear da curva de calibração e assim diminuirmos os erros de diluição das soluções após os ensaios de adsorção.

A curva de calibração relaciona a concentração de Cromo na amostra e sua respectiva absorbância.

Para a leitura da absorbância das soluções de Cromo, foi utilizado o espectrofotômetro, em cubetas de vidro de 1 cm, com um comprimento de onda de 540 nm e zerado com água destilada, pois as soluções foram preparadas com água destilada. As soluções de Cromo tiveram desenvolvimento de cor violeta devido à reação com a solução de Difenilcarbazida.

Figura 4.1: Soluções de Cromo utilizadas para elaboração da curva de calibração.

DESENVOLVIMENTO DA COR

O desenvolvimento da cor violeta ocorre dez minutos após serem adicionados 2 ml de solução de Difenilcarbazida em 100 mL de solução de Cromo, acrescida de cinco gotas de Ácido Fosfórico. Para um melhor desenvolvimento da cor nesta reação, o pH da solução deve estar na faixa de 1,6 a 2,2. Como o pH inicial da solução de Cromo está em torno de 3,7, ao adicionar as cinco gotas de Ácido Fosfórico, o pH teve um decréscimo significativo. Nos casos em que foi necessário continuar a correção para entrar na faixa desejada, foi utilizado Ácido Sulfúrico.

O procedimento para desenvolver a cor foi o mesmo em todos os experimentos, após contato com a levedura e centrifugação no caso dos ensaios, ou após a diluição, no caso da
curva de calibração, as soluções foram acidificadas, depois se adicionou a solução de Difenilcarbazida e estas soluções foram agitadas manualmente até completarem o desenvolvimento da cor, como pode ser observado na Figura 4.2

![Figura 4.2: Soluções em diferentes etapas de desenvolvimento da cor.](image)

PREPARO DA SOLUÇÃO DE DIFENILCARBAZIDA

Esta solução foi obtida a partir da diluição de 1 g de 1,5 Difenilcarbazida em 200 mL de Acetona, tendo agitada e armazenada em um frasco âmbar.

SECAGEM DA LEVEDURA

A primeira tentativa de secagem foi em estufa, com temperatura de 50°C durante três dias, porém este creme de leveduras caramelizou e teve que ser descartado.

O creme de leveduras foi seco em uma secadora de alimentos, com fluxo de ar em contracorrente, temperatura máxima de 45°C, por períodos de três horas com a secadora ligada, intercalados com períodos de vinte e uma horas em que a secadora ficava desligada.

Esta etapa foi realizada em três dias, sendo encerrada ainda com a levedura em base úmida, como mostra a Figura 4.3.
4.2 TESTES DE ADSORÇÃO

Para os testes de adsorção foram preparadas soluções de 200 mL com concentrações, pH ou massa de adsorventes diferentes, dependendo do ensaio a ser feito. Os experimentos realizados encontram-se na Tabela 4.1. Estas soluções foram colocadas em frascos específicos e levadas ao Agitador tipo Wágner, por um período de trinta minutos nos ensaios de diferentes pH e de diferentes massas de adsorvente, e no teste de diferentes concentrações o tempo de residência foi de trinta minutos até a retirada da primeira alíquota e sessenta minutos para a retirada da alíquota final.

As alíquotas de 200 mL foram colocadas em dois frascos de 50 mL específicos para a centrifugação, o restante foi descartado no caso dos ensaios de pH e de massa; para os testes de concentrações iniciais diferentes foram colocado em agitação novamente, pois também foi feito um teste com o dobro do tempo de residência considerado inicialmente. Para todos os testes os frascos foram centrifugados por dez minutos até a completa sedimentação da levedura e clarificação da solução.
Após a clarificação da solução, estas foram transferidas para outro recipiente, receberam as cinco gotas de Ácido Fosfórico conforme o procedimento, tiveram seu pH ajustado quando necessário e prosseguiu-se com o desenvolvimento da cor violeta, através da adição da Difenilcarbazida.

Todas as soluções tiveram seus valores de pH medidos, com correção de temperatura. O equipamento foi calibrado para a faixa ácida com tampões de pH = 7 e pH = 4 sempre antes dos experimentos.

A Tabela 4.1 relaciona todos os ensaios realizados com suas respectivas condições de operação.

Tabela 4.1: Experimentos realizados com suas respectivas condições de operação.

<table>
<thead>
<tr>
<th>Experimento</th>
<th>Teor de Cromo (ppm)</th>
<th>pH</th>
<th>Massa de adsorvente (g)</th>
<th>Tempo (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>10</td>
<td>2</td>
<td>2,0</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>10</td>
<td>2</td>
<td>2,0</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>10</td>
<td>2</td>
<td>1,5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>10</td>
<td>2</td>
<td>1,5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>20</td>
<td>2</td>
<td>3,0</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>20</td>
<td>2</td>
<td>3,0</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 RESULTADOS E DISCUSSÃO

Neste capítulo são apresentados e discutidos os resultados dos experimentos realizados. Primeiramente foi testado o comportamento da levedura em suspensão com relação ao seu pH, depois foram realizados experimentos para determinação das melhores condições de pH e de percentual mássico de adição da levedura, para favorecer a adsorção do Cromo pela levedura. Por último, variaram-se as condições iniciais de concentração para analisar possíveis pontos críticos para este ensaio de adsorção e aumentou-se o tempo de contato solução-adsorvente para avaliar a escolha inicial do tempo de residência.

5.1 TESTE DE pH DA LEVEDURA

Foi realizado um teste em duplicata com apenas o adsorvente suspenso em água destilada para analisar, durante trinta minutos, se haveria mudança no pH desta suspensão. Se houvesse mudanças significativas durante este tempo, que é o tempo escolhido para os ensaios, seria necessário corrigir o pH das soluções durante a agitação, tentando mantê-lo constante, para melhor avaliar a influência deste parâmetro.

Em ambos os testes, não houve variações significativas no pH da suspensão, o qual se manteve em 4,37.

5.2 CURVA DE CALIBRAÇÃO

Para elaboração da curva de calibração, foram feitas diluições a partir da solução de Cromo com concentração de 500 ppm, respeitando as leis de Beer e Henry, para estabelecer a faixa linear máxima onde é possível relacionar as medidas de absorbância com a concentração. Foram utilizadas concentrações de Cromo total entre 0,05 ppm e 4 ppm num total de quinze diferentes concentrações e realizou-se estas leituras em triplicata sendo utilizada a média das três absorbâncias lidas para cada concentração. Neste procedimento não foi preciso descartar nenhuma leitura, pois o desvio entre leituras foi pequeno. Na Tabela 5.1 estão apresentadas as leituras de absorbância para as concentrações definidas de Cromo.
Tabela 5.1: Leituras de absorbância de soluções com concentrações definidas de Cromo obtidas para a construção da curva de calibração.

<table>
<thead>
<tr>
<th>Absorbância</th>
<th>Absorbância</th>
<th>Absorbância</th>
<th>Média dos ensaios</th>
<th>Concentração de Cromo (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensaios 1</td>
<td>Ensaios 2</td>
<td>Ensaios 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0376</td>
<td>0,0363</td>
<td>0,0357</td>
<td>0,0365</td>
<td>0,05</td>
</tr>
<tr>
<td>0,0564</td>
<td>0,0564</td>
<td>0,0558</td>
<td>0,0562</td>
<td>0,075</td>
</tr>
<tr>
<td>0,0898</td>
<td>0,0904</td>
<td>0,0906</td>
<td>0,0903</td>
<td>0,125</td>
</tr>
<tr>
<td>0,1114</td>
<td>0,1112</td>
<td>0,1111</td>
<td>0,1112</td>
<td>0,15</td>
</tr>
<tr>
<td>0,1459</td>
<td>0,1452</td>
<td>0,1454</td>
<td>0,1455</td>
<td>0,2</td>
</tr>
<tr>
<td>0,1796</td>
<td>0,1794</td>
<td>0,1790</td>
<td>0,1793</td>
<td>0,25</td>
</tr>
<tr>
<td>0,1991</td>
<td>0,1949</td>
<td>0,1950</td>
<td>0,1963</td>
<td>0,275</td>
</tr>
<tr>
<td>0,2356</td>
<td>0,2361</td>
<td>0,2363</td>
<td>0,2360</td>
<td>0,325</td>
</tr>
<tr>
<td>0,2492</td>
<td>0,2487</td>
<td>0,2495</td>
<td>0,2491</td>
<td>0,35</td>
</tr>
<tr>
<td>0,3009</td>
<td>0,3012</td>
<td>0,3005</td>
<td>0,3009</td>
<td>0,4</td>
</tr>
<tr>
<td>0,4367</td>
<td>0,4122</td>
<td>0,4271</td>
<td>0,4253</td>
<td>0,7</td>
</tr>
<tr>
<td>0,5811</td>
<td>0,5804</td>
<td>0,5817</td>
<td>0,5811</td>
<td>0,9</td>
</tr>
<tr>
<td>0,7415</td>
<td>0,7609</td>
<td>0,7741</td>
<td>0,7588</td>
<td>1,25</td>
</tr>
<tr>
<td>1,3114</td>
<td>1,3175</td>
<td>1,3239</td>
<td>1,3176</td>
<td>2,5</td>
</tr>
<tr>
<td>2,1295</td>
<td>2,1359</td>
<td>2,1308</td>
<td>2,1321</td>
<td>4</td>
</tr>
</tbody>
</table>

Com estes dados, foi possível construir uma curva de calibração com uma faixa linear ampla para a leitura da concentração de Cromo. A Figura 5.1 apresenta a curva de calibração utilizada para determinação do teor de Cromo nos experimentos de adsorção.
5.3 ENSAIOS DE DETERMINAÇÃO DO pH ÓTIMO DE TRABALHO

Após a definição da equação e da faixa de concentração de Cromo que se mantém linear com a absorbância, e que o pH da levedura se mantém constante, iniciou-se os testes da influência do pH. Para tanto, fixou-se a concentração inicial em 10 ppm, o volume em 200 mL, a massa de adsorvente em 2 g, o tempo de residência de trinta minutos e variou-se o pH da solução sintética de Cromo. A solução inicial de 10 ppm apresenta um pH levemente ácido, então foram utilizados H₂SO₄ e NaOH para fazer variações neste pH e para analisar o comportamento da adsorção em diferentes valores de pH. Foi utilizado um pequeno volume de cada reagente para o acerto de pH (cinco gotas no máximo para o caso de pH = 2) e, portanto, não foi necessário corrigir o volume inicial de 200 mL após esta adição. O experimento foi realizado em duplicata, sendo que os valores de pH das soluções 1, 2, 3 e 4 não foram exatamente iguais nos dois experimentos, mas muito próximos, então as curvas foram definidas como sendo a média destes valores de pH e as médias de absorbância.
Após a preparação das soluções com 10 ppm de Cromo em diferentes valores de pH, foram adicionadas 2 g de adsorvente em cada solução e levadas para agitação pelo período de trinta minutos. Após estes trinta minutos, as soluções com leveduras em suspensão foram centrífugadas por dez minutos, a fim de separar toda a levedura em suspensão, deixando a solução clarificada.

As soluções já clarificadas foram diluídas 1:10, de modo a garantir que o resultado após a adsorção entrasse na faixa linear da curva de calibração. Estas soluções foram então preparadas conforme procedimento já descrito e analisadas no espectofotômetro.

Na Tabela 5.2 estão relacionados os valores de pH utilizados com as respectivas absorbâncias e as concentrações de Cromo resultantes já corrigidas pela diluição.

Tabela 5.2: Teor de Cromo em solução para os testes de adsorção com 2 g de adsorvente, em diferentes pHs e as respectivas leituras de absorbância.

<table>
<thead>
<tr>
<th>[Cr-10ppm]</th>
<th>pH</th>
<th>Abs.</th>
<th>pH</th>
<th>Abs.</th>
<th>pH médio</th>
<th>Abs. média</th>
<th>[Cr] ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1,98</td>
<td>0,1743</td>
<td>2</td>
<td>0,1782</td>
<td>1,99</td>
<td>0,1763</td>
<td>2,374</td>
</tr>
<tr>
<td>II</td>
<td>2,71</td>
<td>0,2361</td>
<td>2,6</td>
<td>0,2229</td>
<td>2,66</td>
<td>0,2295</td>
<td>3,392</td>
</tr>
<tr>
<td>III</td>
<td>4,5</td>
<td>0,2708</td>
<td>4,33</td>
<td>0,2885</td>
<td>4,42</td>
<td>0,2796</td>
<td>4,353</td>
</tr>
<tr>
<td>IV</td>
<td>9,26</td>
<td>0,3844</td>
<td>9,32</td>
<td>0,3855</td>
<td>9,29</td>
<td>0,3849</td>
<td>6,370</td>
</tr>
</tbody>
</table>

Através da análise dos dados apresentados na tabela é possível considerar que no pH 2 houve a maior redução do teor de Cromo da solução inicial após 30 minutos do processo de adsorção com levedura esgotada.

Nos ensaios de pH, observa-se que a redução do teor de Cromo ocorreu em todos os pHs, o que variou significativamente foi o percentual de acordo com o pH. No pH igual a 2 apresentou redução de 76,3 % da concentração inicial de Cromo, e o pH mais alcalino testado, igual a 9,3, a redução da concentração de Cromo foi de 36,3 %, menos da metade da redução alcançada no pH mais ácido. A definição do pH exato para cada processo difere na concentração inicial de Cromo, pois para baixas concentrações iniciais, seria possível chegar à
uma concentração resultante que ficasse dentro das normas ambientais, sem dispender um maior custo.

5.4 ENSAIOS DE DETERMINAÇÃO DO PERCENTUAL ÓTIMO DE ADIÇÃO DE LEVEDURA

O próximo passo foi a definição da massa de adsorvente necessária para obter o máximo de adsorção, neste experimento, não foi realizada correção do pH inicial da solução para o pH definido anteriormente, pois testou-se apenas o percentual mássico de adsorvente ótimo, ou seja, neste caso não era objeto de estudo o máximo de Cromo que poderia ser adsorvido.

Para cada uma das massas escolhidas foram realizados mais dois testes, com concentração inicial de Cromo de 10 ppm, volume de 200 mL, pH da solução igual a 3,7 e variou-se a adição de adsorvente (I – 1.5g; II – 2.0g; III – 2.5g e IV – 3.0g).

Nestes experimentos, foram aplicados os mesmos procedimentos dos testes de pH: as soluções com 200 mL foram agitadas por trinta minutos depois da adição de diferentes massas de levedura. Após a agitação, para maior contato adsorvente-adsorbato, estas soluções foram centrifugadas e submetidas ao procedimento de desenvolvimento da cor violeta, para posteriormente efetuarmos as leituras de absorbância.

Na Tabela 5.3 estão apresentados os resultados obtidos. Os testes foram realizados em duplicata e o teor de Cromo remanescente na solução foi calculado pela média.

Tabela 5.3: Teor de Cromo remanescentes em solução para os testes de adsorção com diferentes massas de adsorvente, em pH 3,7 durante 30 minutos e as respectivas leituras de absorbância.

<table>
<thead>
<tr>
<th>[Cr-10ppm]</th>
<th>pH</th>
<th>Massa de adsorvente</th>
<th>Abs.</th>
<th>Massa de adsorvente</th>
<th>Abs.</th>
<th>Abs. média</th>
<th>[Cr] ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3,7</td>
<td>1,5g</td>
<td>0,2725</td>
<td>1,5g</td>
<td>0,2587</td>
<td>0,2656</td>
<td>4,085</td>
</tr>
<tr>
<td>II</td>
<td>3,7</td>
<td>2g</td>
<td>0,2641</td>
<td>2g</td>
<td>0,2529</td>
<td>0,2585</td>
<td>3,949</td>
</tr>
<tr>
<td>III</td>
<td>3,7</td>
<td>2,5g</td>
<td>0,2601</td>
<td>2,5g</td>
<td>0,2489</td>
<td>0,2545</td>
<td>3,872</td>
</tr>
<tr>
<td>IV</td>
<td>3,7</td>
<td>3g</td>
<td>0,2458</td>
<td>3g</td>
<td>0,2398</td>
<td>0,2428</td>
<td>3,648</td>
</tr>
</tbody>
</table>
Pela análise dos dados observa-se que quanto maior a massa de adsorvente adicionada à solução, maior a redução do Cromo nesta solução. Porém, esta redução não foi significativa, devendo neste caso ser feito um estudo do custo que esta adição implementará no processo e assim analisar a massa ótima para a adsorção.

Os percentuais de redução ficaram entre 59% para a menor massa de leveduras adicionada na solução (1,5 g / 200 mL) e de 63% para a maior massa de leveduras adicionada à solução (3 g / 200 mL). Para este trabalho, utilizou-se a massa que apresentou a maior redução dos níveis de Cromo na solução.

No teste considerou-se que esta diferença, por menor que fosse, seria tomada como a ideal, portanto utilizou-se 3 g de adsorvente / 200 mL para realização dos testes subsequentes de redução dos níveis de Cromo.

Vale ressaltar que esta redução foi menor que a alcançada no teste de pH com 2 g de levedura. Tal fato se deve, provavelmente, ao não ajuste do pH nesta etapa.

5.5 DETERMINAÇÃO DA MÁXIMA REDUÇÃO DE CROMO COM AS MELHORES CONDIÇÕES DEFINIDAS EXPERIMENTALMENTE E ANÁLISE DO TEMPO DE RESIDÊNCIA

O último passo do trabalho, foi unir os dados levantados até então e aplicá-los a soluções para prioritariamente estabelecer o máximo de redução de Cromo nas soluções após a adsorção, e também para avaliar se existe uma concentração máxima onde a toxicidade impediria a adsorção, bem como prolongar o experimento a fim de avaliar se o tempo de residência definido inicialmente é satisfatório.

Nesta última parte, foram avaliadas três soluções em diferentes concentrações iniciais de Cromo (I – 20 ppm; II – 40 ppm e III – 60 ppm), onde todas estas soluções com volume definido de 200 mL, tiveram seu pH ajustado para 2, que foi o pH ótimo definido experimentalmente e acrescentadas de 3 g de adsorvente. As amostras ficaram durante trinta minutos sendo agitadas, após estes trinta minutos 100 mL destas soluções foram retirados
para serem centrifugados e os 100 mL restantes retornaram ao agitador de Wagner por mais trinta minutos, dobrando o tempo de residência inicialmente definido. Depois destes trinta minutos adicionais, estas amostras também foram centrifugadas e diluídas 1:10 para garantir a leitura de absorbância na faixa linear. O procedimento para desenvolvimento da cor seguiu o procedimento previamente descrito e após isso foram feitas as medidas de absorbância que estão apresentadas na Tabela 5.4.

Tabela 5.4: Teor de Cromo remanescente em solução para os testes de adsorção com 3 g de adsorvente e pH 2 em diferentes concentrações de Cromo na solução inicial e as respectivas leituras de absorbância.

<table>
<thead>
<tr>
<th>Solução</th>
<th>[Cr] ppm</th>
<th>pH</th>
<th>Massa de adsorvente</th>
<th>Abs. (30min)</th>
<th>[Cr] (30 min)</th>
<th>Abs. (60min)</th>
<th>[Cr] (60 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>20</td>
<td>2</td>
<td>3g</td>
<td>0,2731</td>
<td>4,2286</td>
<td>0,2683</td>
<td>4,1369</td>
</tr>
<tr>
<td>II</td>
<td>40</td>
<td>2</td>
<td>3g</td>
<td>0,5324</td>
<td>9,1942</td>
<td>0,5125</td>
<td>8,8125</td>
</tr>
<tr>
<td>III</td>
<td>60</td>
<td>2</td>
<td>3g</td>
<td>0,7660</td>
<td>13,6666</td>
<td>0,7437</td>
<td>13,2398</td>
</tr>
</tbody>
</table>

A partir destes dados foi construído o gráfico da redução do Cromo inicial pelo tempo, para cada uma das soluções de diferentes concentrações iniciais, conforme apresentado na Figura 5.2.
Figura 5.2: Redução da concentração de Cromo nas melhores condições experimentais e análise do tempo de residência.

As soluções foram centrifugadas após os testes, para a levedura não influenciar nas leituras de absorbância para a determinação do teor de Cromo após o ensaio. As Figuras 5.3 e 5.4 retratam as diferenças antes e depois da centrifugação.

Figura 5.3: Fotografia das soluções antes da centrifugação.
Figura 5.4: Fotografia das soluções após a centrifugação.

As fotografias retratam com clareza a grande diferença que tem a solução antes e depois da centrifugação, na Figura 5.3 a solução está muito turva, o que iria prejudicar a leitura da absorbância. Já na Figura 5.4, a solução está clarificada, e no fundo do tubo é possível identificar toda a levedura decantada.

Com relação ao tempo de residência, verificou-se que dobrando o tempo definido na fase inicial dos experimentos, a variação foi de 0,7 %, neste caso, ou seja, uma pequena variação na redução da concentração de Cromo e, consequentemente, o tempo de 30 minutos pode ser considerado adequado.

A definição do pH ótimo determinado após os ensaios neste trabalho, está de acordo com o pH ótimo definido por Ferreira et al. (2007), em artigo que utilizou leveduras *Saccharomyces Cerevisiae* para adsorver Chumbo, outro tipo de metal pesado.
6 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

Este capítulo apresenta um estudo experimental preliminar das melhores condições de trabalho para a determinação do percentual de redução de Cromo em soluções sintéticas. Observa-se, também, neste capítulo, as conclusões quanto ao método e fatores que podem ser explorados em trabalhos futuros.

O pH da levedura em água não se modifica durante o tempo de experimento. Desta forma foi possível adicionar a levedura à solução após a estabilização do pH da solução desejado para que o processo de adsorção ocorresse de modo mais efetivo. O melhor pH, entre os testados, foi definido experimentalmente como igual a 2.

Outra questão importante, é que a definição de pH ótimo neste trabalho, se atreve a testar as diferenças nas concentrações iniciais e finais em pH previamente estabelecido, não buscando refinhar para o pH exato onde iríamos encontrar a melhor taxa de adsorção.

No estudo da influência da massa de adsorvente, observa-se que, ao dobrar a massa de levedura utilizada nos testes, de 1,5 g para 3 g, obteve-se uma redução mais acentuada. Estudos de viabilidade econômica seriam necessários para complementar a busca da melhor massa de adsorvente. Os percentuais de redução ficaram entre 59 % para a menor massa de leveduras adicionada na solução, (1,5 g / 200 mL), e de 63% para a maior massa de leveduras adicionada à solução, (3 g / 200 mL).

Em outros estudos poderiam ser avaliados dados colhidos com diferença maior na concentração de adsorvente na solução, se o objetivo é a redução completa da concentração de Cromo no efluente de estudo.

Com relação ao tempo de residência, verificou-se que, dobrando o tempo definido na fase inicial dos experimentos, a variação foi de 0,7 %, neste caso, ou seja, uma pequena variação na redução da concentração de Cromo e consequentemente o tempo de 30 minutos pode ser considerado adequado.
A toxicidade de altas concentrações de Cromo para a levedura não foi detectada até a concentração inicial de 60 ppm. Outros estudos poderiam testar a toxicidade do meio ao adsorvente em concentrações iniciais maiores, ainda que o limite testado está 1200 vezes acima do permitido pela legislação.

A toxicidade da solução para a levedura ainda devia ser estudada com efluente real, não sintético, pois neste caso teríamos diversos compostos na solução que poderiam apresentar toxicidade à levedura de maneira individual ou a solução como um todo poderia apresentar esta toxicidade.

Os resultados do ensaio realizado nas melhores condições definidas experimentalmente apresentaram uma redução média de 77% do teor de Cromo na solução durante os primeiros 30 minutos do ensaio e uma redução média de 78% do teor de Cromo na solução se esta fosse agitada durante 60 minutos.

Ao final de todos estes experimentos, pode-se afirmar que o uso de levedura esgotada representa uma alternativa promissora para a remoção de Cromo por adsorção, contudo testes adicionais devem ser realizados.

Estudos de adsorção com leveduras em diferentes estados, esgotadas, em meia-vida, ou em seu estado inicial, além de testar esta adsorção utilizando efluentes industriais reais, complementariam este trabalho.
7 REFERÊNCIAS BIBLIOGRÁFICAS

