AVALIAÇÃO DA TOXICIDADE SISTÊMICA E REPRODUTIVA DOS ANTIPARASITÁRIOS À BASE DE IVERMECTINA E DE LUFENURONA EM RATAS WISTAR

Vanessa Maraschin Möller

Orientação: Dr. Augusto Langeloh

Porto Alegre
2004
AVALIAÇÃO DA TOXICIDADE SISTÊMICA E REPRODUTIVA DOS ANTIPARASITÁRIOS À BASE DE IVERMECTINA E DE LUFENURONA EM RATAS WISTAR

Autora: Vanessa Maraschin Möller Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciências Veterinárias na área de Farmacologia. Orientador: Dr. Augusto Langeloh

Porto Alegre
2004
AGRADECIMENTOS

Ao meu orientador Augusto Langeloh, pelo incentivo, amizade e paciência no decorrer deste trabalho e ao longo da nossa convivência.

À Eliane, pela incansável disposição com que me ajudou, pelos inúmeros conselhos e sugestões e pelos gestos de amizade, continuamente demonstrados.

À Janaína e Ricardo, pelo grande auxílio na execução dos experimentos e também, pela amizade.

Aos professores David Driemeier e Félix Hilário Diaz Gonzalez, pela orientação nos procedimentos patológicos e bioquímicos.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela bolsa de mestrado.

À empresa Novartis, pelos medicamentos veterinários cedidos para a execução do trabalho.

Ao meu namorado, Jean, pelo amor, compreensão e incentivo, para que esta jornada fosse completada, assumindo comigo o desafio de buscar e cumprir um programa de pós-graduação na seriedade a que me propus.

Ao meu pai (in memoriam), por iluminar a minha vida.

À minha família, pelo interesse, ajuda e apoio em todos os meus projetos.

Às amigas, Bea, Mariângela, Lu e Ale, pela amizade, companheirismo e por nunca terem medido esforços para me auxiliar no desenvolvimento deste trabalho.

Aos animais, que fizeram parte de mais uma etapa do meu aprendizado, o meu eterno carinho, respeito e gratidão.

Finalmente, a todos os que tiveram algum grau de participação neste trabalho e que não foram citados, a certeza de que seu apoio não foi esquecido.
<table>
<thead>
<tr>
<th>SUMÁRIO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTA DE TABELAS..</td>
<td>VI</td>
</tr>
<tr>
<td>LISTA DE FIGURAS..</td>
<td>VII</td>
</tr>
<tr>
<td>LISTA DE ABREVIATURAS...</td>
<td>VIII</td>
</tr>
<tr>
<td>RESUMO...</td>
<td>X</td>
</tr>
<tr>
<td>ABSTRACT...</td>
<td>XI</td>
</tr>
<tr>
<td>1 INTRODUÇÃO ...</td>
<td>12</td>
</tr>
<tr>
<td>2 REVISÃO DE LITERATURA ...</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Antiparasitários ..</td>
<td>15</td>
</tr>
<tr>
<td>2.1.1 Ivermectina ...</td>
<td>17</td>
</tr>
<tr>
<td>2.1.1.1 Ensaios com a ivermectina ...</td>
<td>22</td>
</tr>
<tr>
<td>2.1.2 Lufenurona ..</td>
<td>26</td>
</tr>
<tr>
<td>2.1.2.1 Ensaios com a lufenurona ..</td>
<td>28</td>
</tr>
<tr>
<td>2.2 Toxicidade reprodutiva ..</td>
<td>31</td>
</tr>
<tr>
<td>2.3 Hepatotoxicidade ...</td>
<td>38</td>
</tr>
<tr>
<td>3 OBJETIVOS ...</td>
<td>46</td>
</tr>
<tr>
<td>3.1 Objetivo geral ...</td>
<td>46</td>
</tr>
<tr>
<td>3.2 Objetivos específicos ...</td>
<td>46</td>
</tr>
<tr>
<td>4 MATERIAIS E MÉTODOS ...</td>
<td>47</td>
</tr>
<tr>
<td>4.1 Toxicidade sistêmica e reprodutiva com a ivermectina</td>
<td>47</td>
</tr>
<tr>
<td>4.1.1 Animais e manutenção ...</td>
<td>47</td>
</tr>
<tr>
<td>4.1.2 Especialidade farmacêutica ...</td>
<td>47</td>
</tr>
<tr>
<td>4.1.3 Acasalamento e prenhez ...</td>
<td>47</td>
</tr>
<tr>
<td>4.1.4 Tratamento dos animais ...</td>
<td>48</td>
</tr>
<tr>
<td>4.1.5 Sacrifício ..</td>
<td>49</td>
</tr>
<tr>
<td>4.1.6 Fetos ...</td>
<td>49</td>
</tr>
<tr>
<td>4.1.7 Variáveis avaliadas ...</td>
<td>50</td>
</tr>
<tr>
<td>4.1.8 Análise estatística ...</td>
<td>51</td>
</tr>
<tr>
<td>4.2 Toxicidade sistêmica e reprodutiva com a lufenurona</td>
<td>52</td>
</tr>
<tr>
<td>4.2.1 Animais e manutenção ...</td>
<td>52</td>
</tr>
<tr>
<td>4.2.2 Especialidade farmacêutica ...</td>
<td>52</td>
</tr>
<tr>
<td>4.2.3 Acasalamento e prenhez ...</td>
<td>52</td>
</tr>
<tr>
<td>4.2.4 Tratamento dos animais ...</td>
<td>52</td>
</tr>
<tr>
<td>4.2.5 Sacrifício ..</td>
<td>53</td>
</tr>
<tr>
<td>4.2.6 Dosagem das enzimas hepáticas ..</td>
<td>53</td>
</tr>
<tr>
<td>4.2.7 Desenvolvimento pós-natal ..</td>
<td>53</td>
</tr>
<tr>
<td>4.2.8 Variáveis avaliadas ...</td>
<td>54</td>
</tr>
<tr>
<td>4.2.9 Análise estatística ...</td>
<td>54</td>
</tr>
<tr>
<td>4.3 Hepatotoxicidade com a lufenurona ...</td>
<td>54</td>
</tr>
<tr>
<td>4.3.1 Animais e manutenção ...</td>
<td>54</td>
</tr>
<tr>
<td>4.3.2 Especialidade farmacêutica ...</td>
<td>55</td>
</tr>
<tr>
<td>4.3.3 Tratamento dos animais ...</td>
<td>55</td>
</tr>
</tbody>
</table>
4.3.4 Sacrificio .. 55
4.3.5 Dosagem das enzimas hepáticas ... 55
4.3.6 Análise estatística .. 55

5 RESULTADOS .. 56
5.1 Toxicidade sistêmica e reprodutiva com a ivermectina 56
5.1.1 Desenvolvimento ponderal das ratas durante a prenhez 56
5.1.2 Consumos relativos de água e ração das ratas durante a prenhez 56
5.1.3 Índices reprodutivos ... 58
5.1.4 Massa relativa e histologia dos órgãos .. 59
5.1.5 Índices dos fetos ... 60
5.1.6 Anormalidades esqueléticas dos fetos .. 60

5.2 Toxicidade sistêmica e reprodutiva com a lufenurona 64
5.2.1 Desenvolvimento ponderal das ratas durante a prenhez 64
5.2.2 Consumos relativos de água e ração das ratas durante a prenhez 64
5.2.3 Desenvolvimento ponderal das ratas durante a lactação 66
5.2.4 Índices reprodutivos ... 67
5.2.5 Massa relativa e histologia dos órgãos .. 67
5.2.6 Dosagem das enzimas hepáticas .. 68
5.2.7 Índices dos filhotes ... 69
5.2.8 Desenvolvimento ponderal da progênie ... 69
5.2.9 Características de desenvolvimento geral e sexual das progênie 70

5.3 Hepatotoxicidade com a lufenurona .. 73
5.3.1 Desenvolvimento ponderal das ratas e consumos de água e ração 73
5.3.2 Massa relativa e histologia dos órgãos ... 77

6 DISCUSSÃO ... 81

7 CONCLUSÕES .. 88

REFERÊNCIAS BIBLIOGRÁFICAS ... 89
LISTA DE TABELAS

TABELA 1 Índices reprodutivos das ratas tratadas com ivermectina, por via SC, no 6º dia de prenhez ... 58
TABELA 2 Massa relativa dos órgãos das ratas tratadas com ivermectina, por via SC, no 6º dia de prenhez ... 59
TABELA 3 Índices dos fetos das ratas tratadas com ivermectina, por via SC, no 6º dia de prenhez ... 60
TABELA 4 Anormalidades esqueléticas dos fetos das ratas tratadas com ivermectina, por via SC, no 6º dia de prenhez .. 61
TABELA 5 Índices reprodutivos de ratas tratadas com lufenurona, por VO, no 1º dia de prenhez e no 1º dia de lactação.. 67
TABELA 6 Massa relativa dos órgãos das ratas tratadas lufenurona, por VO, no 1º dia de prenhez e no 1º dia de lactação.. 68
TABELA 7 Níveis séricos da atividade da FA e ALT de ratas tratadas com lufenurona, por VO, no 1º dia de prenhez e no 1º dia de lactação.................. 68
TABELA 8 Índices dos filhotes de ratas tratadas com lufenurona, por VO, no 1º dia de prenhez e no 1º dia de lactação ... 69
TABELA 9 Níveis séricos da atividade da ALT e FA de ratas tratadas com água destilada, lufenurona e CCl₄, por VO, no 5º dia do experimento... 73
TABELA 10 Massa relativa dos órgãos das ratas tratadas com água destilada, lufenurona e CCl₄, por VO, no 5º dia do experimento....................... 78
LISTA DE FIGURAS

FIGURA 1 Estrutura química da ivermectina.. 17
FIGURA 2 Estrutura química da lufenurona... 26
FIGURA 3 Desenvolvimento ponderal e consumo de água e de ração das ratas tratadas com ivermectina, por via SC, no 6º dia de prenhez................................. 57
FIGURA 4 Anormalidades esqueléticas dos fetos diafanizados das ratas tratadas com ivermectina, por via SC, no 6º dia de prenhez.......................... 62
FIGURA 5 Anormalidades esqueléticas dos fetos diafanizados das ratas tratadas com ivermectina, por via SC, no 6º dia de prenhez.......................... 63
FIGURA 6 Desenvolvimento ponderal e consumo relativo de água e de ração de ratas tratadas com lufenurona, por VO, no 1º dia de prenhez.................. 65
FIGURA 7 Desenvolvimento ponderal das rata tratadas com lufenurona, por VO, no 1º dia de prenhez e no 1º dia de lactação.. 66
FIGURA 8 Desenvolvimento ponderal dos filhotes de ratas tratadas com lufenurona, por VO, no 1º de prenhez e de lactação................................. 70
FIGURA 9 Idade no aparecimento das características de desenvolvimento geral das progênies de ratas tratadas com lufenurona e do grupo controle... 71
FIGURA 10 Idade no aparecimento das características de desenvolvimento sexual das progênies de ratas tratadas com lufenurona e do grupo controle... 72
FIGURA 11 Desenvolvimento ponderal e consumo relativo de água e de ração de ratas tratadas com água destilada, lufenurona e CCl₄, por VO, no 5º dia do experimento – ensaio 24h.. 75
FIGURA 12 Desenvolvimento corporal e consumo relativo de água e de ração de ratas tratadas com água destilada, lufenurona e CCl₄, por VO, no 5º dia do experimento – ensaio 72h.. 76
FIGURA 13 Fotomicrografias de baços e fígados de ratas tratadas, por VO, com CCl₄, e água destilada ... 79
FIGURA 14 Fotomicrografias dos rins e adrenais de ratas tratadas, por VO, com CCl₄ e lufenurona... 80
LISTA DE ABBREVIATURAS

ALT Alanina-aminotransferase
ANOVA Análise de variância
AST Aspartato-aminotransferase
°C Graus Celsius
CCl₄ Tetracloreto de carbono
CGA 184’699 Lufenurona (Program®)
COBEA Colégio Brasileiro de Experimentação Animal
CREAL Centro de Reprodução e Experimentação Animal
DL₅₀ Dose letal média
DDT Diclorodifeniltricloretano
EPA Agência de Proteção Ambiental - Environmental Protection Agency (Órgão da Organização Mundial da Saúde)
epm Erro padrão da média
FA Fosfatase alcalina
FAO Organização de Alimentos e Agricultura das Nações Unidas – Food and Agriculture Organization of the United Nations
FDA Administração de Drogas e Alimentos - Food and Drugs Administration (Órgão do governo dos EUA)
g Grama (s)
GABA Ácido gama-aminobutírico
h Horas
ICBS Instituto de Ciências Básicas da Saúde
IM Via intramuscular
IV Via intravenosa
kg Quilograma (s)
<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Explicação</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Litro (s)</td>
</tr>
<tr>
<td>MAPA</td>
<td>Ministério da Agricultura Pecuária e Abastecimento</td>
</tr>
<tr>
<td>MAs</td>
<td>Membros anteriores</td>
</tr>
<tr>
<td>mg</td>
<td>Miligrama (s)</td>
</tr>
<tr>
<td>ml</td>
<td>Mililitro (s)</td>
</tr>
<tr>
<td>MPs</td>
<td>Membros posteriores</td>
</tr>
<tr>
<td>MR</td>
<td>Medidas repetidas</td>
</tr>
<tr>
<td>Nº</td>
<td>Número</td>
</tr>
<tr>
<td>NOEL</td>
<td>Dose sem efeito observado - No observed effect level</td>
</tr>
<tr>
<td>Obj.</td>
<td>Objetiva do microscópio</td>
</tr>
<tr>
<td>OCT</td>
<td>Ornitina carbamiltransferase</td>
</tr>
<tr>
<td>OMS</td>
<td>Organização Mundial da Saúde</td>
</tr>
<tr>
<td>P</td>
<td>Probabilidade, nível de significância alcançado</td>
</tr>
<tr>
<td>SC</td>
<td>Via subcutânea</td>
</tr>
<tr>
<td>SDH</td>
<td>Sorbitol desidrogenase</td>
</tr>
<tr>
<td>SPSS</td>
<td>Pacote de testes estatísticos para ciência social – Package for Social Science</td>
</tr>
<tr>
<td>U/l</td>
<td>Unidades por litro</td>
</tr>
<tr>
<td>VO</td>
<td>Via oral</td>
</tr>
</tbody>
</table>
RESUMO

Avaliou-se a segurança do produto Ivomec® injetável, um endectocida à base de ivermectina, no período de prenhez das ratas Wistar, a fim de verificar possíveis efeitos teratogênicos. As ratas foram tratadas com 0, 4 e 12mg.kg⁻¹ de ivermectina, por via SC, no 6º dia de prenhez. Os resultados revelaram não haver sinais de toxicidade sistêmica e reprodutiva, fundamentados na ausência de alterações no desenvolvimento ponderal, nos consumos de água e de ração, na massa relativa e exame histopatológico dos órgãos das ratas, nas reabsorções embrionárias, na massa corporal, na vitalidade, no número de fetos por progenitora e nas alterações macroscópicas externas e esqueléticas dos fetos. Conclui-se que o medicamento Ivomec® injetável é seguro para as ratas prenhes e aos fetos, quando administrado, em dose única, no início da organogênese. Avaliou-se também, a segurança do produto Program® suspensão, ectocida à base de lufenurona, nos períodos de prenhez e lactação de ratas Wistar, a fim de verificar possíveis efeitos pré e pós-natal. As ratas foram tratadas com 0, 180 e 600mg.kg⁻¹ de lufenurona, por VO, no 1º dia de prenhez e no 1º dia de lactação. Os resultados revelaram ausência de toxicidade sistêmica e reprodutiva nas variáveis avaliadas, assim como as progênies das mesmas não manifestaram alterações no desenvolvimento geral e sexual até 50 dias de vida. Conclui-se que o medicamento Program® suspensão é seguro para as ratas prenhes e lactantes em dosagens de até 600mg.kg⁻¹ de lufenurona, por VO, no 1º dia de prenhez e no 1º dia de lactação. Avaliou-se também a hepatotoxicidade provocada pela lufenurona, comparando-a com uma substância reconhecidamente hepatotóxica, o tetracloreto de carbono (CCl₄), em dois tempos diferentes (24 e 72 horas). As ratas foram tratadas com água destilada, 600mg.kg⁻¹ de lufenurona e 1,98g.kg⁻¹ de CCl₄, por VO, em dose única. Os resultados revelaram que a lufenurona apresentou agressão hepática, caracterizada pela elevação da atividade da ALT, sem alteração do parênquima hepático, no ensaio 72h e provocou um aumento da massa relativa da adrenal direita com tumefação de córtex no ensaio 24h. Já o CCl₄, conforme esperado, apresentou queda do desenvolvimento ponderal e dos consumos, acentuada elevação da atividade da ALT, com degeneração gordurosa hepática, além de degeneração hidrópica renal e congestão de baço e adrenais. Conclui-se que a lufenurona (Program® suspensão) provocou agressão hepática e aumento da massa relativa da adrenal direita.
ABSTRACT

In order to evaluate the possible effect of Ivomec® injetável (ivermectin) used on pregnant animals, medicament very utilized in veterinary clinic, females Wistar rats were orally treated on the sixth gestational day, with 0, 4 or 12mg.kg⁻¹ of ivermectin. This study showed absence of systemic and reproductive toxicity. Results revealed that the antiparasitic did not significantly affect relative body weight gain, water and food consumption, relative mass and histopathological organs of dams, embryonic absorptions, body weight fetuses, number of fetuses per dam and macroscopic and skeletal fetuses development. It is concluded that this antiparasitic is not toxic to the dams and fetus, when administered at the beginning of organogenic period. The effects of Program® suspensão (lufenuron) were evaluated on pregnancy and lactation of Wistar rats to evaluate the possible effects on pre and post-natal pups development. Female Wistar rats were treated orally with 0, 180 or 600mg.kg⁻¹ of lufenuron at first pregnancy and lactation days. The results showed that this antiparasitic did not affect any of the dams variables analyzed (body weight, water and food consumption, relative weight organs (lungs, liver, kidneys), ALT and ALP level, number of the implantation sites) and viable pups. Litter variables (body weight, general and sexual characteristics development until 50 days of life) were also not affected. It is concluded that this antiparasitic is safe for pregnant and lactant rats at doses of 600mg/kg of lufenuron administered at first pregnancy and lactation days. In hepatotoxicity study, were evaluate the effects of Program® suspensão (lufenuron) on Wistar rats, compared with a potent hepatotoxic agent, carbon tetrachloride (CCl₄), in two time intervals (24 and 72 hours). Female Wistar rats were treated orally with distilled water, 600mg.kg⁻¹ of lufenuron or 1,98g.kg⁻¹ of CCl₄, single dose. The results showed that lufenuron is light hepatotoxic agent, characterized by increase in the ALT serum levels in 72 hours interval after administration, without histopathological alterations. However CCl₄ showed high increase in the ALT serum levels in 24 hours interval after administration with lipidic degeneration hepatocytes. In the lufenuron group, there was a relative increase in right adrenal weight, with cortex tumefaction. In the CCl₄ group, there were decrease in body weight gain and water and food consumptions with histopathological alterations in the organs (liver, spleen, kidney and adrenal). It is concluded that Program® suspensão cause light hepatotoxicity and increase relative weight of right adrenal.
1 INTRODUÇÃO

A freqüente utilização de antiparasitários em medicina veterinária representa a importância do controle dos endo e ectoparasitos, tanto em animais de produção, como nos de companhia. O surgimento de resistência aos antiparasitários exige que as indústrias farmacêuticas veterinárias desenvolvam novos produtos bem como que os médicos veterinários estabeleçam rodízio entre fármacos de diferentes mecanismos de ação.

Charles e Furlong (1992) apud Oliveira et al. (2001) ressaltam, que dentre todos os grupos de medicamentos comercializados para o uso em animais no Brasil, os antiparasitários, mais precisamente os anti-helmínticos, estão em 1º lugar em quantidade comercializada. Os antiparasitários recentemente desenvolvidos em medicina veterinária geralmente são menos tóxicos, mais eficazes e de maior espectro de ação do que os mais antigos. Na década de 80 foram introduzidos os endectocidas, lactonas macrocíclicas (avermectinas e milbemicinas), que são fármacos capazes de combater parasitos internos e externos dos animais, com baixa toxicidade, o que foi um grande avanço da indústria farmacêutica veterinária. Existe, no entanto, controvérsia com relação à variação da toxicidade destas substâncias, devido ao elevado número de formulações disponíveis, além do uso indiscriminado pelos proprietários e pelos clínicos veterinários na tentativa de obter um sucesso terapêutico. A toxicidade pode ocorrer quando estas substâncias ou os seus metabólitos atingem órgãos suscetíveis em concentrações suficientemente altas e por um tempo suficiente para iniciar a manifestação tóxica. Os efeitos tóxicos podem ocorrer quando há administração de dosagens elevadas, alta freqüência de administração e uso em espécies para as quais as substâncias não foram preconizadas. Efeitos indesejados também podem surgir do emprego dos antiparasitários em fêmeas prenhes - seja pela absoluta necessidade, neste caso assumindo o risco, seja pela ignorância do estado de prenhez da paciente.

No presente trabalho, utilizaram-se 2 produtos comerciais: Ivomec® (à base de ivermectina) e Program® suspensão (à base de lufenurona), que são antiparasitários
amplamente utilizados na clínica veterinária. Segundo a classificação de toxicidade de Osweiler (1998), a ivermectina, com DL$_{50}$ (oral) para ratos igual à 52mg.kg$^{-1}$ (LYNN, 1999), é uma substância considerada moderadamente tóxica, enquanto a lufenurona, com DL$_{50}$ (oral) para ratos maior que 2000mg.kg$^{-1}$ (MERCK, 1996), é considerada praticamente atóxica. Como estas substâncias apresentam um certo potencial tóxico, baixo no caso da lufenurona e moderado no caso da ivermectina, o cuidado com o seu uso na clínica veterinária deve ser levado em consideração ao prescrever ou administrar tais produtos. A recomendação para uso da ivermectina, segundo a Administração de Drogas e Alimentos, (FDA, do inglês Food and Drug Administration), é para o controle de nematódeos e artrópodes em bovinos, ovinos, suínos, eqüinos, caninos e felinos, nas seguintes dosagens: 0,2mg.kg$^{-1}$, SC, em ruminantes e eqüinos; 0,3mg.kg$^{-1}$, SC, em suínos; 0,006–0,012mg.kg$^{-1}$, VO, em caninos e 0,024mg.kg$^{-1}$, VO em felinos. No entanto, na clínica de pequenos animais, a ivermectina está sendo usada, por via parenteral, para o tratamento da sarna sarcóptica, demodécica, notoédrica e otodécica de caninos e felinos em dosagens superiores (17 a 33 vezes) à recomendada para estas espécies e por longos períodos (7 a 10 dias para escabiose e diariamente por meses para demodicose), conforme Willense (1998) e Anderson (1998), mas sem aprovação do seu uso pelo FDA. O mesmo ocorre com a lufenurona, a qual tem aprovação pelo FDA, para combater pulgas em caninos e felinos, mensalmente, nas dosagens: 10mg.kg$^{-1}$, em caninos e 30mg.kg$^{-1}$, em felinos, por VO. No entanto, descobriu-se a sua eficácia para o tratamento de dermatofitose (BEN-ZIONY; ARZI, 2000), mais especificamente contra Microsporum canis, em dosagens superiores (até 7 vezes para caninos e 9 vezes para felinos) às utilizadas para o controle de pulgas.

Os animais, periodicamente, necessitam do uso de antiparasitários, inclusive durante as fases de prenhez e lactação, que são as fases mais críticas com relação à segurança de xenobióticos. O desenvolvimento dos animais pode ser prejudicado por agentes patológicos, químicos e ambientais. A respeito dos químicos, são importantes em medicina veterinária os de alto uso e os que se depositam por longos períodos no organismo. Os fármacos, administrados às progenitoras, no período de organogênese, podem provocar teratogênese, se a lesão for compatível com a vida do animal ou embriolatalidade, caso não o seja, ocorrendo desta maneira abortos espontâneos e mumificações.

Com relação à lactação, a eliminação de fármacos ou seus metabolítos no leite é assunto de importância em Medicina Veterinária e em saúde pública. A excreção de
produtos no leite pode causar inúmeros e graves problemas à prole. Outro fator importante a se considerar neste caso é a baixa capacidade dos neonatos em biotransformar estas substâncias, devido à imaturidade dos seus sistemas enzimáticos. Por isso, a necessidade de cautela ao se administrar fármacos durante a lactação, pois podem ser tóxicos à prole, mesmo sem causar efeitos adversos aparentes às lactantes.

Tendo em vista, a necessidade do uso de antiparasitários durante o período de prenhez e lactação, podendo ocorrer a administração inadvertidamente durante o início da fase de prenhez, por desconhecimento do estado fisiológico da fêmea, justamente na fase em que os embriões e fetos estão mais suscetíveis a uma exposição, além do uso corriqueiro destas substâncias em altas dosagens na clínica de pequenos animais, justifica-se a execução de ensaios toxicológicos capazes de determinar os efeitos destas substâncias no organismo animal.

Sendo assim, o presente trabalho teve como objetivo principal avaliar a toxicidade reprodutiva de dois produtos antiparasitários amplamente utilizados na clínica veterinária, avaliando-se os efeitos da exposição a ivermectina, durante a fase de organogênese, e a lufenurona, durante as fases pré e pós-natal, em ratas Wistar.
2 REVISÃO DE LITERATURA

2.1 Antiparasitários

Os parasitos constituem um grave problema sócio-econômico pela alta prevalência entre os animais domésticos e silvestres e por alguns deles serem agentes de zoonoses. O controle destes parasitos baseia-se, quase totalmente, na utilização de antiparasitários (AYRES; ALMEIDA, 2002). Antiparasitários são fármacos que reduzem a carga de parasitas para níveis toleráveis matando os parasitas ou inibindo o seu crescimento (HSU, 1997), subdividem-se em ectocidas, endocidas e endectocidas. Os ectocidas apresentam ação somente contra os parasitos externos (p. ex. aracnídeos e insetos). Já os endocidas apresentam ação contra os parasitos internos (p. ex. nematódeos, cestódeos e trematódeos). E os endectocidas apresentam ação contra os parasitos externos e internos (EINSTEIN et al., 1994).

Os antiparasitários do passado possuíam reduzido espectro de ação e estreita margem de segurança (AYRES; ALMEIDA, 2002). O emprego efetivo de fármacos contra artrópodes vem desde 1895, quando se utilizava na Austrália, soluções arsenicais como carrapaticidas. Com o desenvolvimento de resistência, novos medicamentos surgiram como o DDT (diclorodifeniltricloretano), que só foi comercializado como carrapaticida em 1939, e outros organoclorados como o HCB (hexaclorociclo-hexano), o toxafeno e o dieldrin. Com os conseqüentes danos à saúde humana e ao ambiente, devido ao acúmulo no tecido adiposo de animais destinados ao consumo, surgiu uma nova geração de antiparasitários, os organofosforados. A resistência a estes antiparasitários estimulou o desenvolvimento dos piretróides, os quais apresentavam eficácia contra ectoparasitos e baixa toxicidade para mamíferos, mas apresentavam instabilidade química e elevados custos de produção. Apenas em 1973, sintetizou-se o primeiro piretróide estável às condições ambientais (SARTOR; BICUDO, 2002). Já em 1970, descobriu-se a ação antiparasitária de uma benzoilfeniluréia, denominada posteriormente de lufenurona, a qual é um ectocida que inibe a síntese de quitina dos
O grande avanço no controle dos ecto e endoparasitas foi a descoberta das lactonas macrocíclicas, em 1979, como as avermectinas e milbemicinas (AYRES; ALMEIDA, 2002), as quais são reconhecidas pela sua alta eficácia e baixa toxicidade (LYNN, 1999), características que as fazem ser amplamente utilizadas até hoje.
2.1.1 Ivermectina

As avermectinas são substâncias obtidas originalmente da fermentação de amostras de solo do Japão, contendo o fungo *Streptomyces avermitilis* (LYNN, 1999). Da fermentação deste fungo obtém-se ivermectina, abamectina e doramectina. Da fermentação do fungo *Streptomyces hygroscopicus*, obtém-se a milbemicina e a moxidectina (MIOLO, 1999). Segundo Ayres e Almeida (2002), a fermentação do fungo *Streptomyces* gera uma série de compostos similares classificados como “A” e “B”, dependendo da presença dos grupos metoxi (avermectina A) ou hidróxido (avermectina B) no carbono 5. Estes compostos “A” e “B” podem ter uma ligação dupla entre os C-22 e C-23 (A₁ e B₁) ou uma ligação simples no C-23 (A₂ e B₂). São classificados ainda em “a” e “b” quando apresentam no C-25 o grupo butil (A₁a, A₂a, B₁a e B₂a) ou isopropil (A₁b, A₂b, B₁b e B₂b).

![FIGURA 1. Estrutura química da ivermectina](image-url)
Desde a descoberta que um complexo de avermectina na concentração de 0,002% na dieta curou camundongos infestados com nematódeos gastrintestinais, a sua atividade foi demonstrada contra uma ampla variedade de artrópodes e nematódeos (BARRAGRY, 1994). As avermectinas têm, como característica, o amplo espectro de ação com elevada tolerância pelo organismo dos hospedeiros, apesar de não serem isentas de risco de efeitos indesejáveis (MILO, 1999). Apresentam alta eficácia contra nematódeos e artrópodes, incluindo as microfilárias, mas apresentam baixa eficácia contra as formas adultas de *Dirofilaria immitis*. As avermectinas também não têm efeito ovicida (LYNN, 1999).

Segundo Lynn (1999), a ivermectina foi a primeira lactona macrocíclica comercializada em 1981. Ela é constituída por uma mistura de 80% de 22,23 – diidroavermectina B1a e 20% de 22,23 – diidroavermectina B1b. Existem 39 especialidades farmacêuticas à base de ivermectina, atualmente, no mercado, como soluções injetáveis, soluções tópicas, soluções orais (pasta e pó *premix*) e 3 especialidades farmacêuticas em associação, na forma de pasta e comprimidos, com pamoato de pirantel e uma associação com imidacloprid (SINDAN, 2001). Na solução injetável, usa-se como veículo o propilenoglicol que pode causar irritação nos olhos, na pele, no sistema gastrintestinal e no sistema respiratório. O uso crônico pode causar efeitos reprodutivos e fetais (CHEMICAL..., [2002]).

A ivermectina é um dos antiparasitários mais utilizados mundialmente, sendo aprovado para uso em bovinos, suínos, ovinos e eqüinos como endectocida. As dosagens preconizadas, por via SC, são: bovinos, ovinos: 0,2mg.kg\(^{-1}\) e suínos: 0,3mg.kg\(^{-1}\). Para eqüinos, a dosagem é 0,2mg.kg\(^{-1}\), por VO. Em caninos, o fármaco é aprovado somente como preventivo de dirofilariose, na dosagem de 0,006 – 0,012mg.kg\(^{-1}\), por VO, uma vez ao mês. Nas dosagens recomendadas, apresentam uma considerável margem de segurança em bovinos, ovinos, suínos, eqüinos e caninos (SINDAN, 2001).

Grande parte dos autores (ROBERSON, 1992; HSU, 1997; OSWEILER, 1998; MIOLO, 1999; MELLO, 2002) relatam que o mecanismo de ação da ivermectina é a potencialização da ação inibidora do ácido gama-aminobutírico (GABA), promovendo hiperpolarização do neurônio e, portanto, inibindo a transmissão nervosa (SARTOR; BICUDO, 2002). O GABA é um neurotransmissor inibitório liberado diretamente nas sinapses, agindo na membrana pós-sináptica próximo ao terminal nervoso (SPINOSA; BERNARDI, 2002). É liberado por neurônios inibitórios específicos que alteram a
permeabilidade ao cloreto na membrana sináptica e provoca despolarização em terminações nervosas (FRIMMER, 1982). O receptor GABAérgico é constituído de cinco subunidades, sendo duas α, duas β e uma subunidade γ, formando um canal para os íons cloreto (OHI, 2002). Estes receptores estão distribuídos no SNC e a administração de substâncias GABAérgicas desencadeia efeitos generalizados, devido à ampla distribuição destes receptores específicos (CASH; SUBBARAO, 1987). A redução da concentração do GABA, por processos fisiológicos e tóxicos, sempre provoca excitabilidade (FRIMMER, 1982). A ivermectina interage com os receptores do GABA no cérebro de vertebrados (mamíferos), mas a sua afinidade pelos receptores nos invertebrados é cerca de 100 vezes maior (WEBSTER; TRACY, 2003). No entanto, há evidências de que a atividade da ivermectina está ligada também a outro neurotransmissor, o ácido glutâmico (AYRES; ALMEIDA, 2002), fato relatado também por outros autores (ARENA et al., 1991; MARTIM, 1993; SHOOP et al., 1995 apud LYNN, 1999). A ivermectina age num grupo de canais de cloro, os quais são abertos pelo ácido glutâmico. Estes canais estão presentes nas células do músculo faringeo dos nematódeos, o que condiz com o efeito inibitório potente e acentuado das ivermectinas no comportamento alimentar desses organismos (WEBSTER; TRACY, 2003). O efeito mais evidente da ivermectina nos parasitos é a paralisia da musculatura (BARRAGRY, 1994). Em cestódeos e trematódeos, a ivermectina é ineficaz, uma vez que o GABA não apresenta funções de neurotransmissor nestes parasitos (MELLO, 2002).

A forma farmacêutica do medicamento contém uma determinada quantidade de fármaco, incorporado numa apresentação especial (CABANA, 1976 apud BAGGOT, 1992). A farmacocinética é determinada pela solubilidade da forma farmacêutica, influenciada por veículos, pela via de administração e pelas propriedades físico-químicas do fármaco (BAGGOT, 1992). A ivermectina administrada na forma de uma solução aquosa, apresentada como micela foi absorvida mais rapidamente, com pico plasmático mais elevado e meia-vida de eliminação mais curta do que quando administrada na forma não aquosa, contendo propilenoglicol e glicerol formol, por via SC, em bovinos (AYRES; ALMEIDA, 2002).

O longo tempo de deposição da ivermectina no organismo se deve a sua alta lipossolubilidade (SUTHERLAND; CAMPBELL, 1990), tanto que o período de carência para o abate de suínos é de 28 dias após a aplicação do produto (AYRES; ALMEIDA, 2002). Em bovinos, depende da formulação utilizada, sendo 35 dias, por via SC, 24 e 184 dias, por VO (pasta ou bolus), 48 dias, por via cutânnea (pour-on).
A administração de ivermectina em ratos machos e fêmeas Sprague-Dawley por VO (0,3mg.kg\(^{-1}\)) e por via tópica (0,5mg.kg\(^{-1}\)) demonstrou níveis de resíduos maiores na administração oral em relação à tópica. A concentração de resíduos no tecido adiposo foi maior em fêmeas do que em machos. Na administração oral, 57,4% dos machos e 58,4% das fêmeas eliminaram ivermectina um dia após a administração. Após 5 dias da administração o percentual aumentou para 83% dos machos e 91,7% das fêmeas. Na administração oral, maiores concentrações de resíduos estavam localizadas no tecido adiposo, seguido do fígado, rins e músculos (MERCK, 1987 apud WOODWARD, [2003]). Em outro experimento com ratas CRCD foi administrado ivermectina por 61 dias, desde o acasalamento até o 9º dia pós-parto. A dosagem administrada foi de 2,5mg.kg\(^{-1}\)/dia, por VO. Neste grupo, a concentração de ivermectina no plasma aumentou no decorrer dos dias, atingindo um platô no 10º dia de tratamento. No primeiro dia pós-parto, a concentração de ivermectina aumentou em 3 a 4 vezes, devido a mobilização de tecido adiposo. Os resíduos no cérebro eram relativamente mais baixos que nos rins, fígado e carcaça. Em neonatos, a concentração de resíduos no fígado foi 2 vezes maior do que a encontrada no mesmo órgão das progenitoras. Os resultados deste experimento relatam a transferência da ivermectina através do leite materno, sendo esta responsável pelo aumento da mortalidade em neonatos. A barreira hematoencefálica só se completa em período pós-natal (MERCK, 1980a apud WOODWARD, [2003]).

A excreção se dá predominantemente nas fezes, sendo 50% na forma inalterada (MELLO, 2002). Há autores que relatam 98% sob forma inalterada (AYRES; ALMEIDA, 2002). Concentrações antiparasitárias efetivas se mantêm nas fezes por até três semanas, o que demonstra a importância ecotoxicológica (MELLO, 2002). Estes resíduos, encontrados nos excrementos de animais, podem alterar o micro-habitat de uma abundante e diversificada fauna de artrópodes (BLUME, 1985 apud MARCHIORI et al., 2000). Os fármacos antiparasitários são excretados pelos animais, o que afeta o desenvolvimento e a sobrevivência de outros organismos, como Diptera, Coleoptera, Hymenoptera e Acarina, que são importantes no processo de degradação do esterco (BLUME, 1985; CERVENKA; MOON, 1991 apud MARCHIORI et al., 2000). A ivermectina livre também pode afetar adversamente peixes e alguns organismos aquáticos (MIOLLO, 1999). Estes animais, atingidos pela ivermectina, fazem parte de uma cadeia ecológica, o que causará danos aos ecossistemas (AYRES; ALMEIDA, 2002). Quando a ivermectina é adicionada diretamente no esterco em concentrações que
podem ocorrer nos excrementos de bovinos tratados, este não apresentou uma
degradação adequada mesmo após 340 dias, enquanto o esterco não tratado apresentou
alta degradação após 80 dias no solo (FLOATE, 1998). Um estudo desenvolvido por
Sommer e Nielsen (1992) – Environmental..., ([2002]) demonstrou que a concentração
do fármaco em esterco bovino, dois dias após a aplicação de 0,2mg.kg⁻¹ de ivermectina
atingiu uma concentração máxima de 3,8mg.kg⁻¹ de esterco. Segundo Chiu et al. (1990)
apud Environmental... ([2002]), a ivermectina, por exemplo, é excretada na primeira
semana em torno de 60 - 80% na fezes de animais.

Rotineiramente, o produto à base de ivermectina de uso bovino é empregado em
clínica de pequenos animais, em dosagens maiores daquela recomendada para
tratamento de dirofilariose, provocando intoxicações (SAKATE, 2002). O medicamento
está sendo usado para o tratamento da sarna sarcóptica, demócêlica, notoédrica e
otodéctica de caninos e felinos, sem aprovação do seu uso pelo FDA. Segundo
WILLENSE (1998), a demodicose de caninos e felinos pode ser efetivamente tratada
com ivermectina na dosagem de 0,4 - 0,6mg.kg⁻¹/dia, VO, por alguns meses. Contra a
escabiose, conforme o mesmo autor a ivermectina é administrada na dosagem 0,2mg.kg⁻¹,
via SC, a intervalos de 7 a 10 dias. Anderson (1998), também indica a eficácia da
ivermectina em dosagem de 0,3mg.kg⁻¹, via SC, para tratamento de sarna notoédrica.
Por ser um produto com alto período residual, observam-se resíduos no organismo
praticamente um mês após a administração (AYRES; ALMEIDA, 2002). O Comitê da
FAO/OMS sobre aditivos alimentares calculou a percentagem do resíduo 22,23-
diidoavermectina B1a do total de resíduos em bovinos 28 dias após o tratamento,
aparecendo 67% no músculo, 37% no figado, 54% nos rins e 18% no tecido adiposo.

Em humanos a ivermectina tem sido usada extensivamente para controlar
oncocercose em países da África e América Latina, onde a doença é endêmica.
(GIUDICE; MARTY, [2002]), assim como para o tratamento de pediculose, filariose,
escabiose e estrongiloidíase (DEF, 1999). O interesse dos médicos na ivermectina para
doenças parasitárias humanas é decorrente do sucesso do tratamento (GIUDICE;
MARTY, [2002]).

ivermectina é segura para uso em animais reprodutores e prenhes, observaram-se efeitos
teratogênicos com seu uso, em dosagens maiores do que a terapêutica em roedores
(ratos: 10mg.kg⁻¹/dia; camundongos: 0,4mg.kg⁻¹/dia e coelhos: 6mg.kg⁻¹/dia, por VO,
durante o período de organogênese) (AYRES; ALMEIDA, 2002).
2.1.1.1 Ensaios com a ivermectina

Desde o descobrimento da ivermectina como um endectocida de amplo espectro, muitos testes clínicos foram realizados em várias espécies. Todos os medicamentos, para serem aprovados pelos órgãos competentes, devem ser testados quanto a eficácia e segurança, a fim de que possam ser comercializados (THEODORIDES, 1982).

Um dos principais objetivos da teratologia experimental é o de evidenciar possíveis riscos de substâncias químicas aos homens e animais, testes de teratogenicidade são realizados prevalentemente sobre embriões de mamíferos, primeiramente em animais de laboratório (rato, camundongo, coelho e porquinho da Índia) (LEMONICA, 1996). A importância de efeitos teratogênicos causados por medicamentos em medicina veterinária se deve à segurança nas espécies nas quais se utilizará o fármaco e ao risco para humanos sujeito ao consumo de produtos de origem animal contendo resíduos. A ciência está descobrindo que vários medicamentos podem provocar efeitos teratogênicos em várias espécies animais (DELATOUR, 1983).

Com relação aos sinais de toxicidade sistêmica e reprodutiva, bovinos, de ambos os sexos, de seis meses de idade, que receberam dosagens de 4mg.kg\(^{-1}\) de ivermectina, por VO ou SC, apresentaram sinais de toxicidade como ataxia e apatia transitória (MERCK, 1983b apud WOODWARD, [2003]). Em outro experimento, bovinos tratados com dosagem de 8mg.kg\(^{-1}\) ficaram em decúbito após 24h e alguns animais morreram (LYNN, 1999). Nesta mesma dosagem e espécie, Mello (2002) relatou registros de efeitos adversos como sonolência, ataxia, tremores, sialorréia e midríase. Com relação ao desempenho reprodutivo de touros tratados com a dosagem de 0,4mg.kg\(^{-1}\) de ivermectina, avaliado após a administração e após 70 dias, incluindo a qualidade do sêmen, nenhum efeito adverso foi observado, assim como em vacas prenhes tratadas com uma dosagem similar (BARRAGRY, 1994).

Em um experimento com ovinos tratados com 4mg.kg\(^{-1}\) de ivermectina em propilenoglicol, Barragry (1994) relatou sinais de ataxia, depressão e hemoglobulinúria, os quais também foram observados nos animais do grupo controle que receberam somente o veículo (propilenoglicol). Sakate (2002) relatou, em ovinos, sinais de depressão do SNC com uma dose de 0,2mg.kg\(^{-1}\) de ivermectina. O desempenho reprodutivo não foi afetado em carneiros tratados com dosagem de 3mg.kg\(^{-1}\) por 2 vezes, em intervalos de 7 dias (MIOLO, 1999). Com relação a estudos de teratogênia, ovelhas tratadas com 0,4mg.kg\(^{-1}\) de ivermectina entre os primeiros sete dias e entre o
21º e 28º dia de prenhez, apresentaram progêñes isentas de malformações externas (MERCK, 1981e apud WOODWARD, [2003]).

Em equinos, as reações adversas, como abscesso, estão relacionadas com injeções, por via IM (BARRAGRY, 1994). Pode ocorrer também edema subcutâneo, após a administração, por via IM, devido à morte das microfilárias de *Onchocerca cervicalis*. Esses edemas, em geral, se resolvem dentro de 3 a 4 dias (ROBERSON, 1992). Com relação à toxicidade sistêmica, sinais de ataxia, depressão e alteração da visão foram relatados em animais que receberam dosagem de 2mg.kg⁻¹ de ivermectina por VO (BARRAGRY, 1994). Com relação à toxicidade reprodutiva, éguas que receberam dosagem de 0,6mg.kg⁻¹ de ivermectina, durante o período de organogênesese, apresentaram potros normais, sem nenhum tipo de malformação externa. O comportamento sexual e a qualidade do sêmen de garanhões, que receberam a mesma dosagem, também não foram afetados (LYNN, 1999).

Em suínos, administrou-se dosagem acima de 30mg.kg⁻¹, os quais demonstraram sinais de letargia, ataxia, midríase, tremores e decúbito lateral (BARRAGRY, 1994). Com relação à teratogênese, fêmeas tratadas com 0,6mg.kg⁻¹ de ivermectina durante o período de organogênesese, apresentaram progêñes isentas de malformações externas. Em cachaços que receberam dosagem de 0,6mg.kg⁻¹ de ivermectina, o desempenho reprodutivo e a qualidade do sêmen não foram alterados (LYNN, 1999).

Em caninos, a toxicidade está relacionada à alta dosagem e à raça (BARRAGRY, 1994), entre as quais existem as mais suscetíveis à intoxicação pela ivermectina. Cães das raças collie, pastor australiano, *old english sheepdog*, pastor de *Shetland*, *afgan hound* ou seus mestiços são animais particularmente sensíveis. Os collies são sensíveis à ivermectina, em dosagens tão baixas quanto 0,006mg.kg⁻¹ (ROBERSON, 1992). No entanto, existem controvérsias, pois alguns autores relatam que dosagem de 6mg.kg⁻¹ é bem tolerada em collies e em outras raças de cães (ANTINEMATODALS..., [2002]). Em relatos da Merck, ([2001]), observou-se sinais de toxicidade com dosagem de 0,2 e 0,6mg.kg⁻¹. Nessas raças suscetíveis, parece que há participação de gene recessivo autossomal, fazendo com que haja aumento da permeabilidade da barreira hematoencefálica à ivermectina. A intoxicação por ivermectina resulta da concentração do fármaco no sistema nervoso central (SNC), assim as raças suscetíveis apresentam quadro de intoxicação mesmo nas dosagens que para outras raças não seriam prejudiciais. Os sinais clínicos incluem ataxia, hipermetria, desorientação, indiferença ao ambiente, hiperestesia, hiperreflexia, tremores, depressão, debilidade muscular,
paralisia, ausência dos reflexos pupilares, cegueira, bradicardia, pulso fraco e em casos graves, coma e morte (SAKATE, 2002). Há relato de intoxicação em cão pastor alemão, raça não considerada suscetível, que recebeu ivermectina em dosagem para tratamento preventivo de dirofilariosose. Em experimentos com cães da raça beagle, observaram-se efeitos tóxicos como midriase, tremores e ataxia, em dosagens únicas, que variavam de 2,5 a 10mg.kg^{-1}. Mortes ocorreram com dosagem acima de 9,4mg.kg^{-1} (HOPKINS et al., 1990). Com relação a teratogênia, cadelas da raça beagle foram tratadas com ivermectina em óleo, por VO, na dosagem de 0,5mg.kg^{-1} até o 35º dia de prenhez, com intervalos de 10 dias, e suas progêniès não apresentaram anomalias. Em um primeiro momento, acreditou-se que a ivermectina aumentou a frequência de malformações de esternebras, mas os patologistas concluíram que o tamanho e a forma das esternebras são altamente variáveis (MERCK, [2001]).

Em felinos, existe boa tolerância à ivermectina, sendo extremamente rara a reação de idiossincrasia nesses animais. Alguns animais, que receberam ivermectina em dosagens de 0,3 e 0,4mg.kg^{-1}, os sinais neurológicos foram evidentes (SAKATE, 2002).

Em humanos, 103 crianças entre 6 e 13 anos de idade, foram tratadas com dosagem única de 0,15mg.kg^{-1} de ivermectina. Algumas apresentaram edema, mialgia e cefaléia (LARIVIERE, 1988 apud WOODWARD, [2003]). Para o tratamento de escabiose humana, 53 pacientes receberam entre 0,15 e 0,2mg.kg^{-1} de ivermectina, por VO, dos quais alguns apresentaram hipotensão, dor abdominal e vômito (APGAR, 2000). Segundo Wendel (1993), mulheres grávidas tratadas com ivermectina, no 1º trimestre da gestação, não apresentaram complicações maiores como presença de fetos malformados, aumento da taxa de aborto ou natimortos, apesar de haver restrições do seu uso durante a gravidez, pois a segurança ainda não foi estabelecida.

Em animais de laboratório, sinais de toxicidade como bradipnéia, ataxia, sialorréia e diminuição da atividade foram observados em ratos tratados com dosagens de 330 e 660mg.kg^{-1} de ivermectina; alguns animais morreram (MERCK, 1979d apud WOODWARD, [2003]). A ivermectina mostrou-se teratogêniça em ratos, coelhos e camundongos em doses maternotóxicas ou próximas a esta. As 3 espécies apresentaram palato fendido e só os coelhos apresentaram membros anteriores malformados. Os camundongos são mais suscetíveis à intoxicação pela ivermectina, com a dosagem maternotóxica de 0,2mg.kg^{-1}/dia e teratogêniça de 0,4mg.kg^{-1}/dia (MERCK, [2001]).

Segundo Lankas et al. (1998), uma linhagem de camundongos CF-1 contém uma mutação no gene da glicoproteína-P que está presente na placenta, cérebro e intestino.
Assim fetos nascidos de progenitores deficientes nesta proteína podem apresentar teratogenicidade, como palato fendido. Em coelhos, a dosagem maternotóxica e teratogênica foi de 6mg.kg⁻¹/dia, e teratogenicidade também foi observada na dosagem de 3mg.kg⁻¹/dia. Já o limiar maternotóxico e teratogênico em ratos foi de 10mg.kg⁻¹/dia (MERCK, [2001]). Em um experimento com ratos, as fêmeas receberam dosagens de 2,5; 5 e 10mg.kg⁻¹/dia de ivermectina, por VO, entre o 6º ao 17º dia de prenhez. Na maior dosagem, 3 fêmeas foram sacrificadas por apresentarem-se em condições precárias de saúde, após receberem 7 a 9 dosagens e alguns fetos (4 fetos de 2 ninhadas) apresentaram malformação (palato fendido) (MERCK, 1980g apud WOODWARD, [2003]). Poul (1988) relatou a alta suscetibilidade de ratos recém-nascidos à ação neurotóxica da ivermectina, como na locomoção, natação, reflexo do endireitamento em superfície, abertura dos olhos, crescimento e sobrevivência, sem a definição se a intoxicação ocorria por via uterina ou pelo leite materno. Um ano depois, Lankas et al. (1989) relataram que a toxicidade em ratos recém-nascidos era decorrente do leite materno e não da intoxicação in utero. Os níveis de ivermectina no leite foram 3 a 4 vezes maior que no plasma, além de que a total formação da barreira hematoencefálica ocorre no período pós-natal nesta espécie, deixando os lactentes mais suscetíveis aos efeitos indesejáveis do fármaco. Já em outras espécies de mamíferos, como humanos, ovinos e coelhos, a barreira hematoencefálica atinge o total desenvolvimento no período pré-natal (LANKAS et. al, 1989), a qual impede que fármacos polares ou de peso molecular elevado penetrem no SNC (FLORIO, 1999).
2.1.2 Lufenurona

A lufenurona é um antiparasitário seletivo que atua na síntese, transporte, polimerização ou na deposição de quitina, impedindo efetivamente a evolução de ovos e larvas de pulgas (Ctenocephalis canis e C. felis). A quitina é o principal componente da cutícula que forma o exoesqueleto dos artrópodes. Este fármaco não apresenta ação contra pupa e pulga adulta. As pulgas adultas ingerem o fármaco e o passam para os ovos. A larva que se desenvolve dentro do ovo, não forma o dente cefálico quitinoso, que é utilizado para quebrar a casca e eclodir. Já as larvas pré-existentes no ambiente, que ingerirem fezes de pulgas adultas, contendo a lufenurona, ficam impossibilitadas de efetuarem a muda e morrem. Este medicamento é indicado para o controle e prevenção das infestações por pulgas em caninos e felinos e no ambiente (NOVARTIS, [s.d]).

Segundo o SINDAN (1997), o produto Program® pode ser administrado com absoluta segurança em cadelas e gatas prenhes e filhotes desmamados na dosagem preconizada para tratamento contra pulgas. A dosagem contra pulgas para cães é 10mg.kg⁻¹ e a dosagem para gatos é de 30mg.kg⁻¹, mensalmente, junto com o alimento, pois desta maneira a fração biodisponível da dose oral aumenta significativamente (NOVARTIS, [s.d]).
Existem 5 especialidades farmacêuticas à base de lufenurona no mercado, como soluções injetáveis e orais, na forma de suspensão e drágeas. As apresentações de drágeas, em várias concentrações (409,8; 204,9 e 67,8mg da lufenurona) são para administração oral em cães e a solução injetável, por via SC, ou suspensão, por VO, para uso em felinos (SINDAN, 2001).

Com relação à farmacocinética, a lufenurona é bem absorvida pelo trato intestinal, alcançando a circulação sistêmica. Este antiparasitário, ao entrar na corrente sanguínea, alcança concentração máxima entre 6 e 12 horas. Por ser lipofílico, deposita-se no tecido adiposo sendo liberado à corrente sanguínea por um período mínimo de 32 dias (NOVARTIS, [s.d]). A lufenurona se concentra no leite e pode provocar efeitos adversos nos filhotes durante a fase de lactação. Filhotes que mamaram em cadelas tratadas com a lufenurona apresentam concentrações na corrente sanguínea 8 a 9 vezes maior do que a encontrada nas progenitoras (SCHARDEIN, [2001]). A dosagem para felinos é maior devido à velocidade de distribuição e eliminação do fármaco nesta espécie (NOVARTIS, [s.d]). A maior rota de eliminação é pelas fezes (52% dentro de 48 horas), seguindo 2% pela bile e menos de 1% pela urina, o restante é armazenado no tecido adiposo. A meia-vida da primeira fase, em ratos, foi de 45 a 60 horas e de 10 a 37 dias para a segunda fase. A maior parte do CGA 184’699 (Program®) foi excretada inalterado nas fezes (CIBA-GEIGY, [2002]).

Recentemente, Ben-Ziony e Arzi (2000) descobriram a eficácia da lufenurona em altas dosagens para o tratamento de dermatofitose em caninos e felinos. A maioria dos casos clínicos de dermatofitose em cães e gatos são causados por Microsporum canis, Microsporum gypseum e Trichophyton mentagrophytes. A remissão espontânea de dermatofitose em animais de companhia, muitas vezes, ocorre dentro de 1 a 3 meses, mas o tratamento reduz o risco de transmissão para outros animais e para o homem. Tradicionalmente, dermatofitoses são tratadas com griseofulvina e cetoconazol. As células fúngicas apresentam paredes celulares compostas de polissacarídeos complexos, quitina, quitosan, glucana e manana. Como a lufenurona atua na quitina, a qual está presente nas células fúngicas, este fármaco foi testado em 297 animais, entre os anos de 1997 a 1999, com alta eficácia, para tratamento de dermatofitose. A dosagem utilizada para caninos variou entre 54,2 a 68,3mg.kg\(^{-1}\) e a utilizada para felinos variou entre 51,2 a 266 mg.kg\(^{-1}\) de lufenurona. Houve remissão dos sinais clínicos entre 10 a 15 dias para os felinos e 16 a 25 dias para os caninos. Em todos os casos, a cultura micológica foi negativa antes dos sinais clínicos desaparecerem. Aproximadamente 5% destes animais
tratados apresentaram reinfecção, as quais surgiram 18 a 29 dias após o tratamento, no entanto o segundo tratamento foi altamente eficaz nestes casos. O medicamento não provocou efeitos adversos nos animais adultos, nem nos filhotes. Os filhotes de caninos e felinos, com massa corporal inferior a 2,6kg, receberam uma dosagem de 133mg.kg\(^{-1}\) de lufenurona. O menor filhote de canino, com massa corporal de 2,5kg, e de felino, com massa corporal de 0,5kg, receberam 5 e 9 vezes a dosagem terapêutica para o controle de pulgas, sem apresentarem nenhum efeito adverso (BEN-ZIONY; ARZI, 2000).

2.1.2.1 Ensaios com a lufenurona

Alguns medicamentos foram desenvolvidos com o intuito de combater determinados parasitas, mas com o decorrer dos anos e com o avanço da ciência, descobrem-se outras finalidades para determinados fármacos. Estas começaram a ser administradas e receitadas por clínicos, devido à alta eficácia, mas com incertezas a respeito da segurança ainda mais quando se utiliza dosagem muito superior àquelas indicadas pela literatura, as quais apresentaram um embasamento científico.

Em estudos sobre a reprodução, 25 cães da raça beagle machos e 25 fêmeas receberam, diariamente, 30mg.kg\(^{-1}\) de lufenurona, por 3 meses, desde o acasalamento até a lactação. Resultados revelaram que a taxa de prenhez foi de 100% no grupo controle e de 66,7% no grupo tratado com lufenurona. A massa corporal dos filhotes ao nascer provenientes de fêmeas tratadas foi menor que no grupo controle. Nos filhotes provenientes de fêmeas tratadas, observou-se um aumento na incidência de corrimento nasal, congestão pulmonar, diarréia, desidratação e apatia. Estes sinais foram transitórios e diminuíram no final da lactação (SCHARDEIN, [2001]). Em outro estudo de reprodução, cadelas da raça beagle foram tratadas com 30mg.kg\(^{-1}\) de lufenurona, e divididas em 2 grupos: um recebeu as dosagens diariamente; e o outro semanalmente. Estes animais foram tratados desde o acasalamento até 21 dias após o nascimento. Os resultados revelaram que a concentração sanguínea de lufenurona no grupo que recebeu dosagens diárias foi 10 vezes maior que no grupo semanal, assim como a concentração sanguínea nos filhotes do primeiro grupo foi 7 vezes maior que do grupo semanal. Observaram-se níveis elevados de lufenurona na corrente sanguínea dos filhotes 4 a 5 semanas após o desmame. Comparando-se níveis de lufenurona em amostras do leite e
sangue materno, observou-se que a concentração desta no leite foi 14 a 49 vezes maior que no sangue (SCHARDEIN, [2001]).

Em estudos com filhotes, 6 machos e 6 fêmeas, com 2 meses de idade receberam dose única de 200mg.kg⁻¹ de lufenurona, por VO. Os resultados revelaram anorexia e redução da atividade nos animais tratados com lufenurona (SCHARDEIN, [2001]).

Em um relato em humanos, uma lactante ingeriu acidentalmente um medicamento à base de lufenurona. Fez-se uma estimativa da exposição do bebê, concluindo-se por uma dosagem de 0,032mg.kg⁻¹/dia, ou seja, 3% daquela que determinaria um quadro de intoxicação aguda. O bebê foi monitorado por 7 meses e não apresentou efeitos adversos (BAR-OZ. et al., 2000).

Em estudo de toxicidade sistêmica, Tasheva e Hristeva (1992) citaram a capacidade dos inseticidas derivados de benzoilfeniluréias provocarem metemoglobinemia, o que ocorreu com a diflubenzurona. Apesar destes apresentarem algumas características similares em suas toxicidades agudas e mecanismo de ação nos mamiferos, existem diferenças no potencial para causar metemoglobinemia. Enquanto o potencial para causar metemoglobinemia variou em ratos tratados por 28 dias com dosagens orais de 100 a 500mg.kg⁻¹ de diflubenzurona, flufenoxurona, hexaflumurona, teflubenzurona e triflumurona, a contagem de reticulócitos aumentou em todos os grupos tratados. Metemoglobinemia ocorreu somente nos grupos de animais tratados com diflubenzurona e triflumurona.

Com relação à toxicidade subcrônica, ratos de ambos os sexos receberam, por VO, dosagens de 1,7; 10; 100 e 1000mg.kg⁻¹ de CGA 184`699, diariamente, por 3 meses. Convulsões foram observadas em uma fêmea que recebeu a maior dosagem após 12 semanas de tratamento. Outros animais apresentaram o mesmo sinal clínico após um mês de tratamento. O ganho de massa corporal diminuiu após 2 semanas de tratamento até o final do experimento nas duas maiores dosagens. O consumo de ração, a concentração de proteína total e a relação albumina/globulina diminuíram também nestas duas dosagens. Os níveis de colesterol e a atividade de ALT e FA aumentaram na maior dosagem. Ao final do tratamento, na dosagem de 1000 mg.kg⁻¹, os animais apresentaram hepatomegalia e aumento da massa de adrenais. Neste experimento a dosagem de 10mg.kg⁻¹ foi a dose NOEL (nível sem efeitos observáveis, do inglês no observable effect level). Experimento similar foi realizado com cães que receberam dosagens de 8, 122 e 2028mg.kg⁻¹ de CGA 184`699, diariamente, por aproximadamente
3 meses. Houve um aumento nos níveis de colesterol, na atividade da FA, na massa hepática dos animais que receberam as duas maiores dosagens. Neste experimento, concluiu-se que o CGA 184’699 apresenta efeitos hepatotrópicos nas dosagens de 122 e 2028mg.kg\(^{-1}\). A dose NOEL foi de 8mg.kg\(^{-1}\) de CGA 184’699. Em um experimento similar com camundongos, por 2 a 3 meses, convulsões e mortalidade foram observadas em animais que receberam dosagens de 150mg.kg\(^{-1}\) de CGA 184’699. A dose NOEL neste experimento foi de 15mg.kg\(^{-1}\) de CGA 184’699 (CIBA-GEIGY, [2002]).

Em estudos sobre a teratogenia, ratas receberam dosagens, por VO, de 100, 500 e 1000mg.kg\(^{-1}\) de CGA 184’699 entre o 6º e o 15º dia de prenhez. Na maior dosagem, as fêmeas apresentaram redução na massa corporal e no consumo de ração. Nenhum efeito embriotóxico ou teratogênico foi observado neste experimento. A dose NOEL para toxicidade materna foi 500mg.kg\(^{-1}\) de CGA 184’699. Coelhas receberam dosagens de 100, 500 e 1000mg.kg\(^{-1}\) de CGA 184’699 entre o 7º e o 19º dia de prenhez. Nenhum efeito embriotóxico ou teratogênico foi observado neste experimento. A NOEL dose para toxicidade materna foi 1000mg.kg\(^{-1}\) de CGA 184’699 (CIBA-GEIGY, [2002]).

2.2 Toxicidade Reprodutiva

A avaliação toxicológica compreende a análise de resultados experimentais de um fármaco com o objetivo de classificá-lo e, ao mesmo tempo, fornecer informações a respeito da forma correta de seu emprego, bem como as medidas preventivas e curativas quando do uso inadequado. Os dados toxicológicos são informações obtidas através da experimentação em animais de laboratório, em ensaios com microorganismos ou através do registro de casos de intoxicação acidental ocorridos em seres humanos e animais (LARINI, 1997). A legislação vigente prevê que os testes de teratogenicidade devam ser realizados em 2 espécies diferentes de animais, sendo que o coelho, pela sua elevada sensibilidade aos agentes teratogênicos, para o homem, é praticamente imposto como obrigatório, restando ao pesquisador a escolha de outra espécie no âmbito dos roedores (LEMONICA, 1996).

O estudo da fisiologia reprodutiva da espécie de referência nos estudos de toxicologia – Rattus norvegicus (rato) (COBEA, 1996), auxilia na determinação dos protocolos a serem utilizados nos experimentos, levando em consideração os padrões de desenvolvimento geral e sexual durante as diferentes fases de vida.
Segundo Ojeda e Urbanski (1988), as diferentes fases de desenvolvimento pós-natal dos ratos são:

a) Neonatal: primeira semana de vida;

b) Infantil: a partir do 8º até o 21º dia (dia do desmame);

c) Juvenil: do 30º ao 32º dia nas fêmeas e 35º dia nos machos;

d) Peripuberal: período de duração variável que, nas fêmeas, está em torno do 38º dia e, nos machos, entre o 55º e o 60º dia.

Conforme Bennetti e Vickery (1970), a puberdade na rata corresponde ao período de crescimento e maturação dos oócitos nos ovários (que estavam em latência desde o 3º ou o 4º dia de vida), culminando com o primeiro ciclo estral, caracterizado pelo cio. Este ocorre 1 a 2 dias após a abertura do canal vaginal, que, por sua vez, se dá entre o 28º e o 49º dia de idade. A rata encontra-se sexualmente madura entre o 90º e o 100º dia de idade (CHAHOUD; KWASIGROCH, 1977). A rata é um animal poliéstrico anual, ou seja, manifesta vários ciclos estrais, de 4 a 5 dias, ao longo do ano (COBEA, 1996). A maturidade sexual do rato macho se dá em torno dos 40 dias de idade, quando se estabelece o primeiro ciclo espermatogênico completo, tendo máxima fertilidade entre o 100º e o 300º dia de idade (BENNETTI; VICKERY, 1970).

Conforme Chahoud e Kwasigroch (1977), os ciclos são divididos em 4 fases, comumente avaliadas mediante exame de citologia vaginal:

a) Proestro (12h): caracterizado pelo grande número de células nucleadas e algumas células proliferativas do epitélio vaginal;

b) Estro (14h): caracterizado pela presença de células queratinizadas anucleadas; a ovulação ocorre espontaneamente na metade do ciclo escuro durante esta fase;

c) Metaestro (21h): com inúmeros leucócitos e filamentos de muco;

d) Diestro (57h): período de repouso, em que a mucosa vaginal apresenta-se delgada, com poucas células nucleadas, poucos leucócitos e muco.

Em vários laboratórios, os ratos são acasalados na proporção de 3 fêmeas para cada macho, durante todo o período de escuridão, exceto nos experimentos em que o momento da cópula deve ser determinado para avaliar a idade gestacional. Ao confirmar a prenhez, mediante a presença de espermatozóides na citologia vaginal, as fêmeas são colocadas em caixas individuais, e este é considerado o dia zero de prenhez (CHAHOUD; KWASIGROCH, 1977).
ualmente, o termo malformação não significa apenas formação anormal ou defeituosa de tecidos, mas também anormalidades bioquímicas. Estas podem ser causadas pela ação direta de uma substância química, radiações, entre outras sobre o produto da concepção ou secundariamente, através da ação sobre o organismo materno. As trocas de substâncias entre o organismo materno e o conceito se fazem através da placenta, que se forma logo após a nidação do embrião, por invasão e proliferação das células do trofoblasto (LEMONICA, 1996). A placenta tem basicamente as seguintes funções:

- a) Passagem de nutrientes da mãe para o feto;
- b) Troca gasosa, fornecendo oxigênio ao feto e retirando o gás carbônico;
- c) Remoção de substâncias excretadas pelo feto;
- d) Controle hormonal do feto.

O órgão também funciona como barreira bioquímica, com a capacidade de biotransformar muitos fármacos que ali chegam, graças à presença de sistemas enzimáticos (LEMONICA, 1996). A idéia de que a placenta representa uma barreira protetora do embrião/feto contra substâncias tóxicas exógenas não é de todo válida, pois ela tem as propriedades de uma barreira lipídica normal e, portanto, substâncias apolares e lipossolúveis atravessam facilmente esta estrutura. Além disso, na placenta existem sistemas de transporte ativo e difusão facilitada similares àqueles encontrados em outras barreiras celulares, o que possibilita que fármacos que utilizam estes mecanismos também penetrem no compartimento fetal. A passagem de medicamentos do sangue materno para o embrião/feto durante a prenhez vai depender do tipo de placentação, das propriedades físico-químicas do agente e da biotransformação promovida pela placenta (BERNARDI, 2002). Dentre as várias espécies, há placetas mais espessas que outras. O número de camadas celulares da placenta varia de 6 (p.ex.: suíno e eqüino) a uma única camada (p.ex.: roedores) (THOMAS, 1989). Nas placetas do tipo endotelial, característica de carnívoros, ou hemocorial, encontrada em primatas e roedores, o sangue materno entra em íntimo contato com o feto; sendo, portanto, mais fácil a passagem de fármacos da mãe para o feto por esta via (BERNARDI, 2002). Geralmente, a placenta é impermeável para substâncias químicas com massa molecular de 1000 daltons ou mais. A maioria dos fármacos tem massa molecular de 500 daltons ou menos. Por esta razão, o tamanho molecular é um fator importante com relação à passagem de uma substância pela placenta até o embrião ou feto (THOMAS, 1989).
As substâncias endógenas e exógenas que atravessam a placenta vão penetrar na circulação fetal através da via umbilical e passar pelo fígado do feto antes de alcançar o coração e a circulação sistêmica. O líquido amniótico é o mais importante reservatório de substâncias exógenas do feto. Alguns fármacos podem ser biotransformados em metabólitos polares no fígado fetal e aí se acumularem; por outro lado, mesmo os lipossolúveis, que não sofrem biotransformação no compartimento fetal, entram em contato com ele, podendo causar as mais diversas anomalias. Os sistemas de biotransformação fetal desenvolvem-se em períodos bastante precoces da vida intrauterina, variando de acordo com a espécie animal. No rato, o primeiro sistema a ser formado é o sistema P-450, bem antes do surgimento do retículo endoplasmático liso. Por outro lado reações de conjugação, sulfatação e formação de glutathiona são pobremente encontradas em fetos de várias espécies de animais. Portanto, existe pouca probabilidade de que um determinado fármaco seja detoxificado no próprio feto, devido à ausência de enzimas de biotransformação, o que pode causar acúmulo destes no compartimento fetal (BERNARDI, 2002).

Além dos efeitos dependentes do feto, existem as alterações no organismo materno, durante a prenhez, que podem agravar um quadro toxicológico. Dependendo da via de administração a própria absorção pode estar modificada; nos fármacos administrados por VO, por exemplo, a absorção pode estar alterada com a diminuição da motilidade do trato gastrintestinal. Na prenhez, a fêmea apresenta um acréscimo na volemia em até 35%, o que modifica a distribuição dos medicamentos. As alterações de absorção e distribuição podem levar também a uma eliminação diferente dos padrões normais para o fármaco. Durante o período de prenhez, os níveis elevados de progesterona podem, causando proliferação do retículo endoplasmático dos hepatócitos, estimular enzimas celulares e consequentemente, aumentar a biotransformação de substâncias químicas que, por sua vez, altera sua toxicidade, aumentando-a ou diminuindo-a, dependendo do metabólito formado (LEMONICA, 1996). Um estudo feito com a administração oral de malation, inseticida organofosforado, em ratas prenhes demonstrou que a progesterona induziu sistemas enzimáticos a biotransformar o fármaco com maior rapidez, reduzindo, dessa maneira, a gravidade da intoxicação (MATHEWS; DEVI, 1994).

O termo teratogênese designa as malformações induzidas por agentes patológicos, químicos e ambientais durante o período de desenvolvimento dos órgãos de
um animal, podendo ser de natureza estrutural e/ou funcional, ou seja, podem manifestar-se por um defeito físico ou bioquímico (BERNARDI, 2002).

O período de desenvolvimento embriológico e fetal consiste num desenrolar contínuo de mudanças e variações complexas, sendo marcado por fases durante as quais se desenvolvem processos similares nas diferentes espécies de vertebrados, incluindo o homem. O desenvolvimento de mamíferos pode ser dividido em quatro períodos: implantação, organogênese, desenvolvimento fetal e neonatal. O período de implantação inicia-se após a fecundação, que é marcada pela anfimixia, ou seja, a fusão dos núcleos do óvulo e do espermatozoide; a seguir, o ovo se divide várias vezes, atingindo o estágio de blástula. Esta fase é chamada de segmentação e se segue pelo implante do blastocisto no útero. Neste período qualquer interferência produzida por uma substância química leva à embriotalidade, sendo muito rara a ocorrência de teratogênese. O período de organogênese é marcado por uma série de processos definidos sequencialmente, que abrangem desde a proliferação, diferenciação e migração celular até a organogênese propriamente dita, que consiste na formação de órgãos rudimentares. Os fármacos, quando administrados às progenitoras neste período, podem levar à teratogênese, se a lesão for compatível com a vida do animal ou à embriotalidade, caso não o seja. Cada um dos sistemas em formação apresenta um período crítico particular, no qual ele é mais suscetível ao agente. Quanto mais longo for o período crítico de um determinado sistema, tanto mais suscetível será aos efeitos de um determinado fármaco. Por este motivo, nos testes de teratogênese, são sempre estudadas as possíveis anomalias ósseas dos animais, pois o período de organogênese do esqueleto é bastante longo. Além disso, na organogênese as malformações observadas são ditas maiores, enquanto no período que se segue, ou seja, de desenvolvimento fetal, são ditas menores, pois os órgãos já estão formados, havendo apenas o crescimento tecidual (BERNARDI, 2002).

Por fim, após a organogênese, tem-se o período de desenvolvimento fetal e neonatal, quando todos os tecidos já estão formados e ocorre o crescimento do feto ou filhote. No período perinatal, que inclui o período da prenhez e o neonatal, observam-se caracteristicamente histogênese, maturação funcional e ganho de massa corporal. Por regra, a exposição às substâncias químicas, neste período, pode produzir redução na massa corporal, distúrbios funcionais e carcinogênese. O feto é bem mais resistente aos efeitos letais que o embrião, porém apresenta grande suscetibilidade a agentes carcinogênicos devido a alta replicação celular (BERNARDI, 2002). Portanto um
determinado fármaco pode levar a diferentes graus de anormalidades, dependendo da fase em que a progênie é exposta. Os fatores que influenciam na teratogênese são: sensibilidade específica, embriotropismo, existência de um período mais suscetível (organogênese) e o efeito de uma única dosagem (uma anomalia pode ser induzida por um fármaco que foi administrado uma única vez – DELATOUR, 1983).

É importante ressaltar o cuidado da administração de fármacos durante a prenhez e o período neonatal, devido aos possíveis efeitos nocivos à progênie (BERNARDI, 2002). Durante a lactação, a excreção de fármacos ou seus metabólitos no leite pode causar inúmeros e graves problemas para a prole, além de ser um assunto de saúde pública (BERNARDI, 2002). Em seres humanos, há uma série de fármacos que são transferidos ao leite materno e que provocam doenças graves nos bebês, como: cloranfenicol, que provoca depressão de medula óssea; sulfonamida, icterícia; salicilato, distúrbio da coagulação; paracetamol, metemoglobinemia entre outros (GOLDING, 1997). Acrescenta-se ainda o fato do neonato ter baixa capacidade de biotransformar estes agentes pela imaturidade dos seus sistemas enzimáticos. A taxa de eliminação de medicamento por esta via depende da:

a) Concentração do agente no sangue;

b) Capacidade do medicamento de difundir-se através das membranas celulares, lembrando que o pH do leite é menor do que o do plasma, o que facilita a excreção de substâncias básicas;

c) Afinidade pelos constituintes do leite;

d) Quantidade a ser eliminada e eficiência das vias de detoxificação e excreção. Neste sentido, o leite por ser uma emulsão de lipídios em solução aquosa de proteínas, pode excretar tanto fármacos hidrossolúveis como lipossolúveis (BERNARDI, 2002).

Algumas agências reguladoras têm adotado programas-padrão de toxicologia para fármacos, aditivos alimentares e pesticidas (LAMB, 1985; LAMB et al., 1986 apud THOMAS, 1989). O FDA e a Agência de Proteção Ambiental (EPA, do inglês Environmental Protection Agency) são entidades reguladoras que estabeleceram programas de riscos reprodutivos para fármacos e outras substâncias químicas. O FDA impôs normas para fármacos, que incluem 3 protocolos diferentes no desenvolvimento, fertilidade e desempenho reprodutivo geral. O FDA utiliza programas multigerações a fim de avaliar os efeitos químicos na fertilidade, prenhez, parto, lactação e
desenvolvimento geral e sexual da progênie. Já o EPA tem adotado programas de toxicidade reprodutiva particularmente aplicados à pesticidas (THOMAS, 1989).

Em experimentos de teratogenicidade, a rata tem como vantagens a curta duração da prenhez, a alta prolificidade, ninhadas numerosas e o desenvolvimento rápido dos fetos.

Segundo Frohberg (1977), para determinar em laboratório a possível toxicidade de substâncias químicas, devem-se utilizar testes específicos à finalidade para a qual os mesmos são propostos. Estes, conforme o EPA (1996a), são classificados em:

a) Estudos de curto período, para avaliação de toxicidade aguda ou tolerância local;

b) Estudos de longos períodos, realizados por 2 a 6 semanas ou acima de 1 ano, para avaliação de toxicidade crónica;

c) Estudos especiais, para avaliação de toxicidade reprodutiva, mutagenicidade ou carcinogenicidade.

Os estudos de toxicologia reprodutiva são divididos em 3 tipos (EPA, 1996b):

a) Segmento I: toxicidade crônica, que avalia os efeitos sobre a fertilidade de machos e fêmeas, sendo os machos tratados antes e durante o acasalamento, e as fêmeas durante a prenhez e lactação;

b) Segmento II: teratogenicidade, que avalia as possíveis alterações no desenvolvimento da progênie exposta durante a fase de organogênese;
c) Segmento III: toxicidade peri e pós-natal, que avalia os efeitos sobre o desenvolvimento pré e pós-natal de progêni expostas durante as fases de desenvolvimento fetal e lactação.

Durante a fase neonatal, são comummente avaliadas a massa corporal ao nascimento, a vitalidade, a presença de anormalidades macroscópicas externas e os indicadores de desenvolvimento físico (descolamento dos pavilhões auriculares e surgimento de penugem). Na fase infantil, além da massa corporal e do número de filhotes desmamados, são avaliados o desenvolvimento do pêlo, erupção dos dentes incisivos, abertura dos olhos e a descida dos testículos. Nas fases juvenil e peripuberal, são avaliadas principalmente as características de desenvolvimento sexual que determinam a puberdade, ou seja, a separação prepucial e a abertura do canal vaginal, com a manifestação do primeiro ciclo estral, assim como o ganho de massa corporal durante o período (EPA, 1996b).

2.3 Hepatotoxicidade

O fígado desempenha papel importante no organismo, realizando inúmeras funções bioquímicas essenciais para a vida, incluindo, secreção e excreção de bile; detoxificação; armazenamento de ferro e cobre; metabolismo protéico, lipídico e dos carboidratos; síntese de fibrinogênio, protrombina e heparina (DOXEY, 1985). O retículo endoplasmático liso do hepatócito é responsável pela síntese de colesterol e ácidos biliares, pela degradação do glicogênio, pelo metabolismo e conjugação de pigmentos biliares, xenobióticos ou outras substâncias ingeridas e hormônios. O retículo endoplasmático rugoso do hepatócito produce proteínas plasmáticas, tais como a albumina e fibrinogênio, fatores de coagulação e globulinas (MACLACHLAN; CULLEN, 1998).

O fígado é o local mais comum de agressão tóxica, por receber em torno de 80% do seu suprimento sangüíneo da veia porta. Assim, substâncias químicas, metais, minerais, substâncias tóxicas ingeridas ou substâncias produzidas por fungos e bactérias são transportadas para o fígado. A outra razão da suscetibilidade hepática aos tóxicos é devido a sua função de biotransformar várias substâncias exógenas e de metabolizar as substâncias endógenas (MACLACHLAN; CULLEN, 1998). Essa atividade pode
aumentar (bioativação) ou diminuir os efeitos de uma substância tóxica (OSWEILLER, 1996). Entretanto pode ser um processo menos importante para substâncias que são excretadas de maneira inalterada, como a ivermectina (AYRES; ALMEIDA, 1999). Além do processo de biotransformação, a lesão hepática pode ser agravada com o uso de fármacos que realizam a circulação entero-hepática. Neste caso, os fármacos, após a biotransformação são secretados na bile, às vezes, como metabólitos mais tóxicos que a forma original. Na sequência, estes são reabsorvidos no intestino e voltam ao fígado pela circulação portal, podendo causar sérias lesões hepáticas. Tipicamente, durante a biotransformação, compostos lipossolúveis tornam-se hidrossolúveis para facilitar a excreção na bile e urina. Há duas fases, na primeira etapa, grupos polares são adicionados a um composto ou grupos polares pré-existentes são expostos por oxidação, hidrólise ou redução, pelo sistema citocromo P-450 (sistema oxidase de função mista). Este, localizado no retículo endoplasmático liso, é o maior sistema enzimático do fígado envolvido na biotransformação de xenobióticos. Na segunda etapa, o metabólito da primeira fase é conjugado a glicuronato, sulfato ou outros grupos, e essa forma solúvel em água é excretada na urina e bile (MACLACHLAN; CULLEN, 1998).

Deve-se lembrar também, que há vários fatores que influenciam a toxicidade de uma substância, como fatores inerentes ao próprio tóxico podem ser citados: composição, solubilidade, polaridade, ionização, formulação e interações químicas diretas. Os fatores referentes ao animal são: a capacidade de metabolização, doenças concomitantes (principalmente hepática e renal), estado nutricional, idade, sexo, espécie, raça, linhagens e vias de exposição (SAKATE, 2002).

As substâncias podem ser divididas em hepatotoxinas predizíveis (previsíveis) e em idiossincrásicas (imprevisíveis). As predizíveis são aquelas que, quando administradas em dose adequada, produzem lesão hepática em praticamente todas as espécies suscetíveis. A maioria das hepatotoxinas em medicina veterinária pertence a esta categoria. Já as idiossincrásicas são as que causam lesão numa minoria de indivíduos expostos, usualmente após exposição prolongada ou repetida (MACLACHLAN; CULLEN, 1998). Algumas substâncias podem ser biotransformadas em radicais livres, os quais causam alterações celulares, incluindo peroxidação de lipídios nas membranas. A peroxidação causa dissolução de membranas ribossomais, conseqüentemente, a síntese de proteínas cessa. Já outras podem reduzir o fluxo
sangüíneo, por danos a vasos sangüíneos, ou por estimulação à trombose na microcirculação hepática (STROMBECK; GUILFORD, 1991).

A lesão induzida por toxinas varia consideravelmente com o tipo, a dosagem e a duração da exposição. Reações do hepatócito à agressão tóxica aguda incluem tumefação celular, acúmulo de lipídios, acompanhada ou não de colestase e inflamação. Se for grave, pode progredir para necrose. A agressão tóxica contínua e repetida é caracterizada por apresentar degeneração e fibrose. Certas toxinas, como as aflatoxinas, levam a um estágio de figado terminal com o desenvolvimento de neoplasias (MACLACHLAN; CULLEN, 1998). O figado tem maior propensão a sofrer lesões por exposições crônicas, porque, frequentemente, a exposição aguda a elevadas dosagens leva à morte, antes que tenha ocorrido a destruição hepática (PEARSON, 1993).

Os sintomas de uma moléstia hepática são provocados pela falha de algumas das funções do figado, mas nem sempre estes sintomas podem ser evidenciados nos estágios iniciais da afecção (PEARSON, 1993). Em todas as espécies, distúrbios da função hepática tendem a produzir sinais semelhantes, independente da causa. Lesões focais raramente destroem uma quantidade suficiente do parênquima a fim de produzir sinais de insuficiência. Insuficiência hepática é a perda da função normal como conseqüência de lesão aguda ou crônica (MACLACHLAN; CULLEN, 1998). A insuficiência hepática aguda ocorre quando uma lesão súbita e grave compromete pelo menos 70 a 80% da massa hepática funcional, excedendo a capacidade de reserva funcional deste órgão e resultando em sinais clínicos de insuficiência hepática, refletindo-se no rompimento de uma ou mais funções hepáticas importantes (JOHNSON, 1997). As substâncias químicas que tipicamente causam lesão hepática aguda também têm potencial de causar moléstia hepática crônica, quando ocorrer continuidade na administração dessas substâncias (JOHNSON, 1997).

O grau de lesão hepática, causado por substâncias químicas e biológicas, é variável, oscilando desde aumentos subclínicos na atividade sérica das enzimas hepáticas, até a insuficiência hepática aguda ou crônica. A lesão hepática crônica pode resultar numa hepatopatia em estágio terminal, caracterizada por fibrose ou cirrose hepática grave. A hepatopatia em estágio terminal foi associada a episódios crônicos ou repetidos de exposição a toxinas ou fármacos, que está associada à fibrose ou cirrose hepática grave, causando uma disfunção generalizada. Os sinais, a princípio, são vagos e inespecíficos como: anorexia, letargia, vômito, perda de peso, poliúria e polidipsia (JOHNSON, 1997). Muitas vezes, nos casos iniciais de moléstia hepática, os sinais não
são aparentes ao proprietário ou veterinário, mas tais casos geralmente são detectados pelo achado de níveis elevados da atividade de enzimas hepáticas no soro (PEARSON, 1993). Com o aumento da gravidade da insuficiência crônica, surgem sinais nítidos de icterícia, ascite, coagulopatia e encefalopatia hepática (JOHNSON, 1997).

As células dos diferentes órgãos contêm enzimas particulares capazes de executar funções específicas. Algumas das enzimas estão presentes em todas as células, já outras aparecem em altas concentrações em um número limitado de órgãos, algumas vezes, em um único órgão. O figado apresenta uma série de enzimas, algumas hepatoespecíficas, ou seja, aquelas que estão presentes em altas concentrações neste órgão, como ALT (alanina-aminotransferase) e OCT (ornitina-carbamiltransferase). Assim, quando estas se apresentam em alta atividade no plasma, não há dúvidas da sua procedência (BUSH, 1991). Lesões aos hepatócitos podem resultar na liberação de enzimas para a circulação, ou a incapacidade de sua produção ou excreção (PEARSON, 1993). Segundo Mattenheimer e Friedel (1977); Diederichs et al. (1979); Lindena et al. (1979) apud Kaneko (1997), as células não precisam morrer para liberar enzimas, somente um curto período de hipóxia é suficiente para alterar a integridade da membrana celular, permitindo a liberação das enzimas para o plasma (GORES et al., 1990 apud KANEKO et al., 1997). Portanto, a atividade elevada destas enzimas pode ser decorrente da alteração da integridade dos hepatócitos ou da excreção biliar (PEARSON, 1993). Normalmente, as alterações hepáticas acarretam elevação da atividade enzimática, devido ao extravasamento destas para o plasma. Já a diminuição desta atividade não apresenta significado clínico (BUSH, 1991), a não ser em casos de degeneração celular grave, no qual ocorre uma perda da função celular. As enzimas hepáticas tendem a perder a sensibilidade diagnóstica em hepatopatias graves (DUNN, 2001), devido a degeneração celular, o que conseqüentemente acarreta níveis enzimáticos normais ou diminuídos. Essencialmente o que é medido no soro é a taxa de conversão de uma substância (substrato) em outra, realizada por uma enzima. A atividade é expressa em unidades internacionais por litro (UI/l). Entretanto a definição de uma unidade internacional, neste caso, é a quantidade da enzima que converterá um micromol de substrato em um minuto (BUSH, 1991).

A FA é uma enzima glicoprotéica que pode ser encontrada em vários tecidos, principalmente no tecido ósseo, sistema hepatobiliar e mucosa gastrintestinal; em menor grau, nos rins, placenta e baço (LOPES et al., 1996). A izoenzima óssea é induzida pela atividade dos osteoblastos e a sua atividade é maior em animais jovens, em fase de

em muitas formas de degeneração hepática (STROMBECK; GUILFORD, 1991). Elevações discretas da atividade de ALT não são importantes, uma vez que o fígado é responsável pela detoxificação, sendo comum este órgão sofrer lesões. Após um incidente que resulte em lesão hepática extensiva (hepatite infecciosa canina ou intoxicação por tetracloreto de carbono), a atividade da ALT se eleva rapidamente, atingindo picos depois de 3 a 4 dias e decaindo aos níveis normais em 10 a 14 dias tanto em caninos quanto em felinos (BUSH, 1991).

Os hepatócitos respondem diferentemente às agressões sofridas, de forma dependente da natureza do agente agressor e do tempo que este agente atuou na célula. As alterações histopatológicas encontradas nos hepatócitos são: deposição de gordura, de glicogênio, pigmentação, amiloidose, degenerações, distúrbios circulatórios entre outras alterações (JONES et al., 2000).

Degeneração hidrópica é uma alteração comum em hepatócitos em várias doenças, desde uma intoxicação de grau leve até hipóxia (KELLY, 1985). É o estágio posterior da tumefação celular e é uma das primeiras alterações microscópicas identificáveis subseqüente a uma lesão (MACLACHLAN; CULLEN, 1998). Sua causa direta é um defeito no mecanismo da bomba de íons sódio-potássio, necessário para a manutenção de uma pressão osmótica apropriada no interior celular (JONES et al., 2000). Alterações como hipóxia e lesões provocadas por toxinas podem produzir degeneração hidrópica. Qualquer compartimento membranoso do citoplasma pode estar envolvido, consequentemente, a hipóxia pode produzir vacuolização lisossomal e mitocondrial, enquanto toxinas ligam-se no retículo endoplasmático, provocando aumento de volume de organelas (KELLY, 1985).

O depósito de glicogênio nas células pode ser decorrente de hiperglicemia, causa mais comum após a alimentação, ou de alterações patológicas como diabete melito, hiperadrenocorticismo ou moléstias do armazenamento do glicogênio (glicogenoses). Essas são alterações hereditárias recessivas autossômicas caracterizadas por deficiência de várias enzimas envolvidas na síntese ou degradação de glicogênio. Carboidratos de todos os tipos são normalmente transportados no sangue na forma de glicose, sendo armazenados na forma de glicogênio, principalmente no fígado e musculatura esquelética. As células podem aumentar 10 vezes o tamanho normal, tornando-se distorcidas. Na microscopia, independente do depósito ter ocorrido de forma normal ou anormal, o glicogênio surge na forma de espaços irregulares e vazios no citoplasma das células. Isso ocorre porque o glicogênio é uma substância hidrossolúvel e que se
dissolve rapidamente pelos métodos rotineiros de preparação de tecidos, deixando espaços vazios no citosol rico em proteínas (KING; ALROY, 2000).

O acúmulo de gordura ou triglicerídeos no citoplasma de hepatócitos é conhecido como figado gordo, lipídose hepática ou degeneração gordurosa e é uma das lesões mais comuns (MACLACHLAN; CULLEN, 1998). Este tipo de degeneração é a manifestação mais importante de doença hepática tóxica, causando lesão difusa na membrana e/ou distúrbio de síntese protéica (KELLY, 1985). O acúmulo de gordura neutra no interior das células faz com que estas se expandam e, no figado, comprimam os lúmens dos sinusóides. As células podem ficar tão distorcidas que acabam rompendo-se, derramando gotículas de gordura pelos tecidos circunjacentes. Clinicamente este evento pode estar associado a elevações nas enzimas hepáticas, como aspartato aminotransferase (AST) e ALT, indicando uma necrose hepática incipiente (KING; ALROY, 2000). A degeneração não é uma doença específica, mas pode ocorrer como sequela de uma variedade de perturbações do metabolismo normal (MACLACHLAN; CULLEN, 1998). Este acúmulo pode ocorrer em casos de jejum prolongado, após uma refeição rica em gordura, no final da prenhez e em processos patológicos. Na macroscopia, este figado apresenta-se com coloração mais clara, variando entre o branco e o amarelo (JONES et al., 2000). Na microscopia, o citoplasma das células afetadas contém um grande vacúolo ou vários vacúolos pequenos e arredondados que distendem o citoplasma celular e deslocam o núcleo para a periferia (KING; ALROY, 2000).

A lesão hepática causada por hepatotoxinas depende de vários fatores, incluindo a concentração da toxina, a duração e a intermitência da exposição. Estes efeitos variam desde a elevação da atividade de enzimas séricas e ausência de sinais clínicos até insuficiência hepática grave, caracterizada por lesões histopatológicas específicas (TILLEY; SMITH, 2003).
3 OBJETIVOS

3.1 Objetivo geral

Estudar a toxicidade sistêmica e reprodutiva de antiparasitários amplamente empregados na medicina veterinária, avaliando os efeitos sobre variáveis de toxicidade em ratas Wistar.

3.2 Objetivos específicos

a) Avaliar os efeitos do antiparasitário à base de ivermectina (Ivomec® injetável) sobre variáveis de toxicidade sistêmica e reprodutiva nas ratas Wistar e os efeitos sobre o desenvolvimento embriofetal.

b) Avaliar os efeitos do antiparasitário à base de lufenurona (Program® suspensão) sobre variáveis de toxicidade sistêmica e reprodutiva nas ratas Wistar e os efeitos sobre o desenvolvimento geral e sexual de suas progêñies durante as fases de prenhez e lactação.

c) Avaliar os efeitos do antiparasitário à base de lufenurona (Program® suspensão) sobre o fígado de ratas Wistar em dois tempos diferentes (24 e 72 horas).
4 MATERIAIS E MÉTODOS

4.1 Toxicidade sistêmica e reprodutiva com a ivermectina

4.1.1 Animais e manutenção

Foram utilizados 30 ratas e 10 ratos Wistar adultos (90-110 dias de idade) com uma média de massa corporal, em gramas, de 204,6 ± 27,9 e 233,0 ± 12,0 provenientes do Centro de Reprodução e Experimentação Animal (CREAL) do Instituto de Ciências Básicas da Saúde (ICBS) da Universidade Federal do Rio Grande do Sul (UFRGS). Os animais foram adaptados às condições do biotério de experimentação do Departamento de Farmacologia previamente ao início do experimento. Estes foram mantidos em sala com temperatura controlada (aproximadamente 22°C) e umidade relativa do ar constante, obedecendo a um ciclo com 12 horas de luz (9h às 21h) e 12 horas de escuridão, recebendo água e ração comercial (Nuvilab CR1 – Nuvital) à vontade, durante todo o experimento.

4.1.2 Especialidade farmacêutica

Foi utilizado o antiparasitário Ivomec® injetável, na concentração declarada de 1%, cujo fármaco é a ivermectina, apresentado em frasco plástico com 50ml, fabricado pelo laboratório Merial Saúde Animal Ltda. (rua Barão de Jaguará, 901/14º andar, CEP 15015-001, Campinas – SP), licenciado no MAPA (Ministério da Agricultura, Pecuária e Abastecimento) sob número 1275/80, partida 156/00, com fabricação em maio de 2000 e prazo de validade de 5 anos.

4.1.3 Acasalamento e prenhez

As ratas virgens foram acasaladas, durante o ciclo escuro (21h às 9h), na proporção de 3 fêmeas para cada macho, colocadas na caixa (45 x 30 x 18cm) do respectivo macho. Foi confirmado o início da prenhez, sendo este considerado o dia zero, por meio da presença de espermatozóides e de células queratinizadas na citologia
vaginal (estro). As ratas foram transferidas para caixas individuais e avaliadas quanto a toxicidade reprodutiva (duração da prenhez, número de filhotes, proporção de sexo e vitalidade dos mesmos) e sistêmica (massa corporal e consumo de água e ração).

4.1.4 Tratamento dos animais

Foram constituídos 3 grupos experimentais com 10 ratas prenhes em cada um: controle (0mg.kg\(^{-1}\)), ivermectina 4mg.kg\(^{-1}\) e 12mg.kg\(^{-1}\). O antiparasitário Ivomec\(^®\) foi administrado, por via SC, no 6\(^{o}\) dia de prenhez. O grupo controle foi tratado com solução fisiológica em igual volume da maior dose de ivermectina. Estas dosagens correspondem a 10 e 30 vezes a dosagem terapêutica indicada para ratos e caninos (ALLEN et al.,1998).

Durante a fase de prenhez, os consumos de água e de ração foram medidos a cada 3 dias e relacionados à massa corporal média do mesmo período, conforme as fórmulas abaixo:

\[
\text{Consumo relativo de água} = \frac{\text{consumo de água (ml)/3}}{\text{massa corporal média dos 3 dias (g)}} \times 100
\]

\[
\text{Consumo relativo de ração} = \frac{\text{consumo de ração (g)/3}}{\text{massa corporal média dos 3 dias (g)}} \times 100
\]

A massa corporal das ratas prenhes foi mensurada diariamente e relacionada à massa corporal do dia zero de prenhez, considerada 100% (massa corporal relativa), conforme a fórmula abaixo:

\[
\text{Massa corporal relativa} = \frac{\text{massa corporal diária (g)}}{\text{massa corporal do dia zero (g)}} \times 100
\]

4.1.5 Sacrifício

A vivissecção, experimentos realizados com animais vivos em centros de pesquisa, foi realizada conforme a lei 11.915/03 do Código Estadual de Proteção aos Animais do Estado do Rio Grande do Sul. As ratas prenhes foram sacrificadas no 21\(^{o}\)
dia de prenhez para avaliação teratogênica dos fetos. Após a mensuração da massa corporal, as ratas foram anestesiadas com tiopental sódico (50mg.kg\(^{-1}\)), por via intraperitoneal. O abdômen foi incisado e o útero exposto. Removido-se o útero para mensuração da massa uterina e da massa corporal da rata sem o útero. Nos ovários, contou-se o número de corpos lúteos e, no útero, o número dos sítios de implantação. Órgãos, como o baço, coração, encéfalo, figado, pulmão e rins foram removidos, inspecionados macroscopicamente e pesados. As massas dos órgãos foram relacionadas à massa corporal de cada rata sem o útero, conforme a seguinte fórmula:

\[
\text{Massa relativa do órgão} = \frac{\text{massa do órgão (g)}}{\text{massa corporal sem o útero (g)}} \times 100
\]

Os órgãos foram colocados em formol tamponado a 10% para posterior análise histopatológica. Após a fixação em formol, foram embebedos em parafina, seccionados com 3µm. Os fragmentos foram montados sobre a lâmina, fixados com xilol, corados com hematoxilina/eosina e observados em microscópio óptico a 40, 100 e 400x de aumento. A análise da histopatologia foi realizada no Laboratório de Patologia Animal da Faculdade de Veterinária da UFRGS (Av. Bento Gonçalves, 9090, Porto Alegre - RS).

4.1.6 Fetos

Após a incisão do útero lateralmente, os fetos foram removidos e avaliados macroscopicamente quanto a malformações macroscópicas externas, sexo e vitalidade. Posteriormente, sofreram o processo de diafanização (segundo a técnica modificada de TAYLOR; VAN DYKE, 1985) para avaliação das anomalias esqueléticas. Esta técnica constou de uma fase de desidratação, com imersão dos fetos em álcool etílico 70ºGL por 24h e posteriormente imersão em álcool etílico 96ºGL por mais 24h. Após este processo, removeu-se as vísceras dos fetos mediante uma incisão abdominal. Os fetos foram imersos em uma solução tampão de borato de sódio a 30% por 24h. Para a digestão da musculatura, utilizou-se a mesma solução tampão misturada com tripsina na concentração de 1g/litro. Os fetos permaneceram nesta solução à temperatura ambiente, até a completa dissolução da musculatura, tornando assim o feto transparente. Na sequência, os fetos foram corados, mediante imersão em uma solução de hidróxido de potássio a 1,5%, com a adição do corante de alizarina. Por fim, os fetos passaram por
uma sequência de imersões em soluções de glicerina a 40 e a 70% com hidróxido de potássio a 1,5% por 48h em cada uma. Após foram mantidos em glicerina 100%. Os fetos foram observados através de microscópio estereoscópico para avaliação esquelética. As anormalidades encontradas foram comparadas com aquelas representadas no Atlas de Anomalias Esqueléticas em Ratos (CHAHOUD, 1997) e denominadas conforme a terminologia da International Federation of Teratology Societies (WISE et al., 1997).

4.1.7 Variáveis avaliadas

As variáveis avaliadas nas ratas foram a massa corporal relativa, os consumos relativos de água e ração, a massa relativa e histopatologia dos órgãos e os índices reprodutivos, incluindo o número de fetos por rata e as perdas pré e pós-implantação, calculadas conforme as fórmulas a seguir (LEMONICA et al., 1996):

\[
\text{Perdas pré-implantação} = \frac{\text{nº de corpos lúteos} - \text{nº de sítios de implantação}}{\text{nº de corpos lúteos}} \times 100
\]

\[
\text{Perdas pós-implantação} = \frac{\text{nº de sítios de implantação} - \text{nº de fetos}}{\text{nº de sítios de implantação}} \times 100
\]

As fórmulas das variáveis avaliadas nos fetos foram a massa corporal e os índices fetais, como taxa de natalidade, proporção de sexo, malformações macroscópicas externas e anormalidades esqueléticas, conforme as fórmulas (EPA, 1996b) abaixo:

\[
\text{Taxa de vitalidade} = \frac{\text{nº de fetos vivos}}{\text{nº total de fetos}} \times 100
\]

\[
\text{Proporção de sexo} = \frac{\text{nº de machos}}{\text{nº de fêmeas}}
\]
$$\text{nº total de fetos com malformação externa}$$
$$\text{Taxa de malformações externas} = \frac{\text{nº total de fetos com anormalidades esqueléticas}}{\text{nº total de fetos}} \times 100$$

$$\text{nº total de fetos com anormalidades esqueléticas}$$
$$\text{Taxa de anormalidades esqueléticas} = \frac{\text{nº total de fetos}}{\text{nº total de fetos}} \times 100$$

4.1.8 Análise estatística

A análise estatística foi feita através dos testes: análise de variância de medidas repetidas (ANOVA de MR), análise de variância de uma via (ANOVA) e o qui-quadrado (Zar, 1999). Os programas utilizados para avaliar a análise estatística foram o SPSS para Windows 8.0 e o EXCEL 2000. As variáveis quantitativas (desenvolvimento ponderal das ratas, consumo de água e de ração) foram avaliadas através da análise de variância de medidas repetidas. A massa relativa dos órgãos das ratas, o número de corpos lúteos, sitios de implantação e o número de fetos foram avaliados por meio de análise de variância de única via. Quando necessário, efetuou-se o pós-teste Bonferroni para identificação dos grupos estatisticamente diferentes. As variáveis qualitativas (proporção de sexo, taxa de vitalidade, taxas de malformações externas e alterações esqueléticas) foram avaliadas através do teste qui-quadrado.

Todas as análises foram avaliadas com uma confiança de 95% ($\alpha = 0.05$) ou 99% ($\alpha = 0.01$). No texto, foram relatados os níveis de significância alcançados (P).
4.2 Toxicidade sistêmica e reprodutiva com a lufenurona

4.2.1 Animais e manutenção

Foram utilizados 30 ratas e 10 ratos Wistar adultos (90-130 dias de idade) com uma média de massa corporal, em gramas, de 232.8 ± 23.3 e 251.6 ± 17.0 provenientes do Centro de Reprodução e Experimentação Animal (CREAL) do Instituto de Ciências Básicas da Saúde (ICBS) da Universidade Federal do Rio Grande do Sul (UFRGS). Os animais foram mantidos conforme referido anteriormente no item 4.1.1.

4.2.2 Especialidade farmacêutica

Foi utilizado o antiparasitário Program® suspensão, cujo fármaco é a lufenurona, apresentado em ampolas de 1,90g, fabricado pelo laboratório Novartis Saúde Animal Ltda. (avenida Prof. Vicente Rao, 90, CEP 04706-900, São Paulo – SP), licenciado no MAPA sob número 4062/92, partida 99/10, com fabricação em setembro de 1999 e prazo de validade de 3 anos.

4.2.3 Acasalamento e prenhez

As ratas virgens foram acasaladas e identificadas como prenhes, conforme referido anteriormente no item 4.1.3.

4.2.4 Tratamento dos animais

Foram constituídos 3 grupos experimentais: controle (n=10), lufenurona 180mg.kg$^{-1}$ (n=8) e 600mg.kg$^{-1}$ (n=12). A lufenurona foi administrada, por VO, com sonda flexível, no 1º dia de prenhez e no 1º dia de lactação. Com base na informação da bula, estas dosagens correspondem a 18 e 60 vezes a dosagem terapêutica indicada para o controle de pulgas, em caninos, e 6 e 20 vezes, em felinos. Com relação a dosagem para tratamento de dermatofitose, estas dosagens correspondem a 3 e 9 vezes a terapêutica indicada por Ben Ziony e Arzi (2000) para caninos. O grupo controle foi tratado com água destilada em volume da maior dosagem de lufenurona. Os consumos de água e de ração, durante a fase de prenhez do experimento, foram medidos a cada 3 dias e relacionados à massa corporal média do mesmo período, conforme as fórmulas já referidas no item 4.1.4.
A massa corporal das ratas prenhes e lactantes foi mensurada diariamente e relacionada à massa corporal do dia zero de prenhez e do dia zero de lactação, que foi considerada 100% (massa corporal relativa), conforme a fórmula abaixo:

\[
\text{Massa corporal relativa} = \frac{\text{massa corporal diária (g)}}{\text{massa corporal do dia zero (g)}} \times 100
\]

4.2.5 Sacrifício

As ratas foram sacrificadas no 21º de lactação (dia do desmame), conforme referido anteriormente no item 4.1.5. Logo após a anestesia, o abdômen foi incisado, expondo-se a veia cava abdominal, para a coleta de sangue para análise das enzimas hepáticas ALT e FA. Órgãos, como coração, fígado, baço e rins foram removidos, inspecionados macroscopicamente, mensurados e relacionados à massa corporal, conforme item 4.1.5.

4.2.6 Dosagem das enzimas hepáticas

Ao sacrifício, coletou-se aproximadamente 4ml de sangue das ratas para análise bioquímica. O sangue coletado, sem anticoagulante, foi centrifugado para a separação do soro, o qual foi transferido para tubos eppendorf. Para a análise dos níveis séricos das enzimas, adicionou-se o soro aos reagentes do kit Labtest Diagnóstica e posteriormente efetuou-se a leitura em aparelho de espectrofotometria no Laboratório Veterinário de Análises Clínicas Pet Lab (Rua Visconde do Herval, 604, Porto Alegre - RS).

4.2.7 Desenvolvimento pós-natal

Logo após o nascimento, os filhotes foram identificados individualmente, por meio de marcação permanente com tinta nanquim, por via intradérmica, nas patas anteriores e posteriores (DALLEGRAVE, 1999). A massa corporal dos filhotes foi avaliada individualmente, nos dias: 0, 7, 14 e 21 (dia do desmame). Após, as ninhadas foram alojadas em caixas maiores e tiveram sua massa corporal avaliada individualmente, nos dias: 28, 35, 42 e 49. Aos 35 dias, os filhotes foram separados por sexo.

As características de desenvolvimento geral e sexual avaliadas, diariamente, foram: descolamento de orelhas, surgimento de penugem, surgimento dos pêlos,
erupção dos dentes incisivos, abertura dos olhos, descida dos testículos, separação prepucial e abertura do canal vaginal (EPA, 1996a). Após os 49 dias de vida, os filhotes foram sacrificados em câmara de CO$_2$.

4.2.8 Variáveis avaliadas

As variáveis avaliadas nas ratas foram conforme referidas no item 4.1.7, com exceção das perdas pré-implantação. As variáveis avaliadas nos filhotes foram a idade de manifestação das características de desenvolvimento geral e sexual e as mesmas referidas no item 4.1.7, com exceção das anormalidades esqueléticas.

4.2.9 Análise estatística

A análise estatística foi feita através dos testes: análise de variância de medidas repetidas (ANOVA de MR), análise de variância de uma via (ANOVA) e qui-quadrado (Zar, 1999), conforme referido no item 4.1.8. A variável quantitativa contínua, como o desenvolvimento ponderal dos filhotes, foi avaliada através da análise de variância de medidas repetidas, e os níveis séricos das enzimas hepáticas foram avaliados por meio de análise de variância de única via. As características de desenvolvimento geral e sexual foram avaliadas mediante o teste de qui-quadrado.

4.3 Hepatotoxicidade com a lufenurona

4.3.1 Animais e manutenção

Foram utilizadas 25 ratas Wistar adultas (90-110 dias de idade) com uma média de massa corporal, em gramas, de 209,90 ± 17,75, provenientes do Centro de Reprodução e Experimentação Animal (CREAL) do Instituto de Ciências Básicas da Saúde (ICBS) da Universidade Federal do Rio Grande do Sul (UFRGS). As ratas foram mantidas conforme referido anteriormente no item 4.1.1.

4.3.2 Especialidade farmacêutica

O antiparasitário utilizado foi referido no item 4.2.2 sendo a partida 01 24, com fabricação em setembro de 2001 e prazo de validade de 3 anos.
4.3.3 Tratamento dos animais

Foram constituídos 5 grupos com 5 animais em cada um, divididos em 2 ensaios, um de 24h e outro de 72h. Em ambos os ensaios, o grupo lufenurona 600mg.kg\(^{-1}\) foi acompanhado do grupo tetracloreto de carbono (CCl\(_4\)) 1,98g.kg\(^{-1}\), como controle positivo. Segundo Slater (1966) apud Wong et. al (2000), o CCl\(_4\) produz hepatotoxicidade, em ratos, na dosagem de 1,98g.kg\(^{-1}\). O grupo controle foi comum para ambos os grupos. Lufenurona e CCl\(_4\) foram administrados, por VO, com uma sonda rígida, no 5º dia do experimento. O grupo controle foi tratado com água destilada em volume da maior dosagem de lufenurona, também com sonda rígida.

Os consumos de água e de ração foram medidos, diariamente, e relacionados à massa corporal média do respectivo período. A massa corporal das ratas foi mensurada diariamente e relacionada à massa corporal conforme fórmula referida no item 4.1.4.

4.3.4 Sacrifício

Dez ratas foram sacrificadas 24h e, 15 ratas, 72h após a administração da lufenurona e CCl\(_4\), conforme referido anteriormente no item 4.1.5. Logo após a anestesia, o abdômen foi incisado, expondo-se a veia cava abdominal, para a coleta de sangue para dosagem dos níveis séricos das enzimas hepáticas ALT e FA. Órgãos, como coração, fígado, baço, rins e adrenais foram removidos, inspecionados macroscopicamente, pesados e relacionados à massa corporal, conforme item 4.1.5.

4.3.5 Dosagem das enzimas hepáticas

O sangue foi coletado e as enzimas dosadas, conforme referido anteriormente no item 4.2.6.

4.3.6 Análise estatística

A análise estatística foi feita através dos testes já referidos nos itens 4.1.8 e 4.2.9.
5 RESULTADOS

5.1 Toxicidade sistêmica e reprodutiva com a ivermectina

5.1.1 Desenvolvimento ponderal das ratas durante a prenhez

A ivermectina não alterou o desenvolvimento ponderal normal das ratas prenhes (Figura 3A). Houve um aumento significativo de massa corporal para todos os grupos, mas não houve diferença estatisticamente significativa entre os grupos \((P = 0,82; \text{ANOVA de MR})\). Das 10 fêmeas tratadas em cada grupo, houve um ganho, em gramas, em relação à massa corporal (média ± epm) no início da prenhez de: 126,3 ± 9,1 no grupo controle (0mg.kg\(^{-1}\)), 127,7 ± 7,3 no grupo ivermectina 4mg.kg\(^{-1}\) e 133,2 ± 6,8 no de 12mg.kg\(^{-1}\).

5.1.2 Consumos relativos de água e ração das ratas durante a prenhez

A ivermectina não interferiu no consumo médio de água (Figura 3B) e de ração (Figura 3C) em relação à massa corporal (%) durante a prenhez. Verificou-se que, tanto as ratas tratadas com ivermectina quanto aquelas do grupo controle, apresentaram consumo relativo de água (ml%) e ração (g%) semelhante durante toda a prenhez. Não houve diferença estatisticamente significativa entre os grupos (água: \(P = 0,70\) e ração: \(P = 0,91\); ANOVA de MR). As ratas tratadas apresentaram um consumo médio (média ± epm) de água: 20,11 ± 0,93 no grupo controle, 21,15 ± 1,49 no grupo ivermectina de 4mg.kg\(^{-1}\) e 21,22 ± 1,14 no de 12mg.kg\(^{-1}\) e de ração: 9,9 ± 0,4 no grupo controle, 9,8 ± 0,5 no grupo ivermectina de 4mg.kg\(^{-1}\) e 9,7 ± 0,5 no de 12mg.kg\(^{-1}\).
FIGURA 3. (A) Desenvolvimento ponderal relativo (1º dia = 100%), (B) consumo relativo de água e (C) ração das ratas tratadas com 0, 4 e 12mg.kg\(^{-1}\) de ivermectina, por via SC, no 6º dia de prenhez. A seta assinala o dia do tratamento. Dados expressos em média e erro padrão da média (n = 10/grupo). \(P > 0,05\) (ANOVA de MR).
5.1.3 Índices reprodutivos

A ivermectina administrada, por via SC, no 6º dia de prenhez, nas dosagens de 4 ou 12 mg.kg\(^{-1}\) não alterou significativamente \((P = 0,97,\) ANOVA e \(P = 0,70\) e 0,22; qui-quadrado, respectivamente) a média de fetos por fêmea, as perdas pré e pós-implantação das ratas (Tabela 1).

TABELA 1. Índices reprodutivos das ratas tratadas com 0, 4 e 12mg.kg\(^{-1}\) de ivermectina, por via SC, no 6º dia de prenhez. Dados expressos em número absoluto (ratas), média e erro padrão da média (corpos lúteos, sítios de implantação e fetos/rata) ou percentual (perdas pré e pós-implantação).

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Ivermectina (mg.kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Nº de ratas</td>
<td>10</td>
</tr>
<tr>
<td>Corpos lúteos</td>
<td>14 ± 0,84</td>
</tr>
<tr>
<td>Sítios de implantação</td>
<td>11 ± 1,31</td>
</tr>
<tr>
<td>Número de fetos/rata</td>
<td>10,9 ± 1,19</td>
</tr>
<tr>
<td>Perdas pré-implantação (%)</td>
<td>15,7</td>
</tr>
<tr>
<td>Perdas pós-implantação (%)</td>
<td>7,6</td>
</tr>
</tbody>
</table>

Sem diferenças significativas entre os grupos \((P > 0,05;\) ANOVA)

5.1.4 Massa relativa e histologia dos órgãos

A ivermectina não alterou de forma significativa a massa relativa de órgãos (%) das ratas tratadas, por via SC, no 6º dia de prenhez, nas dosagens de 4 e 12mg.kg\(^{-1}\) em comparação ao grupo controle (Tabela 2). A análise de variância de única via dos respectivos órgãos revelou: coração \((P = 0,22),\) encéfalo \((P = 0,08),\) figado \((P = 0,96),\) pulmão \((P = 0,63),\) rim direito \((P = 0,46)\) e rim esquerdo \((P = 0,76).\) Os órgãos não apresentaram alterações histopatológicas.
TABELA 2. Massa relativa dos órgãos das ratas tratadas com 0, 4 e 12mg.kg\(^{-1}\) de ivermectina, por via SC, no 6º dia de prenhez. Dados expressos em número absoluto (ratas) ou média e erro padrão da média (órgãos).

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>0</th>
<th>4</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº de ratas</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Coração</td>
<td>0,35 ± 0,01</td>
<td>0,32 ± 0,01</td>
<td>0,35 ± 0,02</td>
</tr>
<tr>
<td>Encéfalo</td>
<td>0,73 ± 0,02</td>
<td>0,73 ± 0,02</td>
<td>0,68 ± 0,02</td>
</tr>
<tr>
<td>Fígado</td>
<td>5,15 ± 0,13</td>
<td>5,13 ± 0,13</td>
<td>5,10 ± 0,13</td>
</tr>
<tr>
<td>Pulmão</td>
<td>0,56 ± 0,02</td>
<td>0,53 ± 0,02</td>
<td>0,56 ± 0,03</td>
</tr>
<tr>
<td>Rim direito</td>
<td>0,34 ± 0,01</td>
<td>0,32 ± 0,01</td>
<td>0,37 ± 0,05</td>
</tr>
<tr>
<td>Rim esquerdo</td>
<td>0,32 ± 0,01</td>
<td>0,32 ± 0,01</td>
<td>0,33 ± 0,02</td>
</tr>
</tbody>
</table>

Sem diferenças significativas entre os grupos \(P > 0,05;\) ANOVA

5.1.5 Índices dos fetos

A ivermectina não alterou de forma significativa os índices dos fetos de ratas tratadas, em comparação ao grupo controle (Tabela 3). Com relação ao número de fetos, massa corporal ao nascimento \(P = 0,97\) e \(P = 0,57;\) ANOVA) e quanto a vitalidade, alterações macroscópicas externas e proporção de sexo \(P = 1,0;\) \(P = 1,0\) e \(P = 0,89;\) qui-quadrado) não houve diferenças entre os grupos.
TABELA 3. Índices dos fetos das ratas tratadas com 0, 4 e 12mg.kg\(^{-1}\) de ivermectina, por via SC, no 6º dia de prenhez. Dados expressos em número absoluto (ratos e fetos), percentual (vitalidade e alterações macroscópicas), média e erro padrão da média (massa corporal) ou proporção (macho/fêmea).

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Ivermectina (mg.kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Nº de ratas</td>
<td>10</td>
</tr>
<tr>
<td>Nº de fetos</td>
<td>109</td>
</tr>
<tr>
<td>Vitalidade (%)</td>
<td>100</td>
</tr>
<tr>
<td>Massa corporal por ninhada (g)</td>
<td>4,85 ± 0,05</td>
</tr>
<tr>
<td>Alterações macroscópicas externas (%)</td>
<td>0</td>
</tr>
<tr>
<td>Proporção de sexo</td>
<td>0,87/1</td>
</tr>
</tbody>
</table>

Sem diferenças significativas entre os grupos \((P > 0,05; \text{ANOVA e qui-quadrado})\)

5.1.6 Anormalidades esqueléticas dos fetos

O tratamento das ratas com ivermectina, no 6º dia de prenhez, nas dosagens de 4 e 12mg.kg\(^{-1}\) não aumentou a prevalência de anormalidades esqueléticas nos fetos em comparação com as observadas no grupo controle (Tabela 4). Ao contrário, no grupo tratado com 12 mg.kg\(^{-1}\) de ivermectina a prevalência de fontanelas aumentadas diminuiu significativamente \((P < 0,01, \text{teste qui-quadrado})\). Em todos os grupos, tratados e controle, as principais anormalidades observadas foram: ossificação incompleta do crânio, fontanela aumentada, supraoccipital bipartido e metatarso não-ossificado (Figuras 4 e 5).
TABELA 4. Prevalência das anormalidades esqueléticas (A – malformações e B – variações) dos fetos das ratas tratadas com 0, 4 e 12mg.kg\(^{-1}\) de ivermectina, por via SC, no 6\(^{o}\) dia de prenhez. Dados expressos em percentual de fetos acometidos e número absoluto (ratas e fetos).

<table>
<thead>
<tr>
<th>Anormalidades esqueléticas</th>
<th>A - Malformações (%)</th>
<th>Ivermectina (mg.kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Costelas arqueadas</td>
<td>0,92</td>
<td>0,00</td>
</tr>
<tr>
<td>Costelas ausentes</td>
<td>0,00</td>
<td>1,83</td>
</tr>
<tr>
<td>Costelas onduladas</td>
<td>0,92</td>
<td>0,92</td>
</tr>
<tr>
<td>Escápula irregular</td>
<td>0,92</td>
<td>0,92</td>
</tr>
<tr>
<td>Esternebras ausentes</td>
<td>0,92</td>
<td>0,92</td>
</tr>
<tr>
<td>Esternebras bipartidas</td>
<td>0,92</td>
<td>0,00</td>
</tr>
<tr>
<td>Interparietal fendido</td>
<td>0,92</td>
<td>1,83</td>
</tr>
<tr>
<td>Supraoccipital bipartido</td>
<td>16,51</td>
<td>11,93</td>
</tr>
<tr>
<td>Tibia e fibula arqueadas</td>
<td>0,92</td>
<td>0,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B - Variações (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ossificação incompleta</td>
</tr>
<tr>
<td>Costelas</td>
</tr>
<tr>
<td>Crânio</td>
</tr>
<tr>
<td>Esternebras</td>
</tr>
<tr>
<td>Fêmur</td>
</tr>
<tr>
<td>Ísquio e púbis</td>
</tr>
</tbody>
</table>

Não ossificação

Falanges dos MAs	0,92	0,00	0,00
Falanges dos MPs	3,67	1,83	2,68
Fontanela aumentada	44,04	39,45	17,86*
Metatarso	32,11	33,03	35,71
Vértebras caudais extras	1,83	2,75	6,25
Nº ratas (fetos)	10(109)	10(109)	10(112)

MAs= membros anteriores e MPs= membros posteriores
*Diferença significativa em relação ao grupo controle (\(P < 0,05;\) teste qui-quadrado)
FIGURA 4. Anormalidades esqueléticas dos fetos diafanizados em relação a fetos normais (gruppo controle) Figura A - Supraoccipital bipartido (ivermectina 12mg.kg⁻¹), B - Fontanela aumentada (ivermectina 4mg.kg⁻¹), C - Ossificação incompleta de crânio (ivermectina 12mg.kg⁻¹). As setas assinalam as variações relatadas.
FIGURA 5. Anormalidades esqueléticas dos fetos diafanizados em relação a fetos normais (grupo controle). Figura A - Vértebras caudais extras (ivermectina 12mg.kg\(^{-1}\)), B - Metatarso não ossificado (ivermectina 12mg.kg\(^{-1}\)). As setas assinalam as variações relatadas.
5.2 Toxicidade sistêmica e reprodutiva com a lufenurona

5.2.1 Desenvolvimento ponderal das ratas durante a prenhez

A lufenurona não alterou o desenvolvimento ponderal normal das ratas prenhes (Figura 6A). Houve um aumento significativo de massa corporal para todos os grupos, mas não houve diferença estatisticamente significativa entre os grupos ($P = 0,51$; ANOVA de MR). Das 30 ratas tratadas (10 no grupo controle; 8, no lufenurona 180mg.kg$^{-1}$ e 12, no 600mg.kg$^{-1}$) houve um ganho, em gramas, em relação à massa corporal (média ± epm) no início da prenhez de: 104,0 ± 7,1 no grupo controle (0mg.kg$^{-1}$), 110,4 ± 7,1 no grupo lufenurona de 180mg.kg$^{-1}$ e 99,5 ± 8,0 no de 600mg.kg$^{-1}$.

5.2.2 Consumos relativos de água e ração das ratas durante a prenhez

A lufenurona não interferiu no consumo médio de água (Figura 6B) e de ração (Figura 6C) em relação à massa corporal (%) durante a prenhez. Verificou-se que, tanto as ratas tratadas com lufenurona, quanto aquelas do grupo controle, apresentaram consumo relativo de água (ml%) e ração (g%) semelhante durante toda a prenhez. Não houve diferença estatisticamente significativa entre os grupos (água: $P= 0,20$ e ração: $P= 0,59$; ANOVA de MR). As ratas tratadas apresentaram um consumo relativo médio (média ± epm) de água: 17,8 ± 1,2 no grupo controle, 16,2 ± 1,2 no grupo lufenurona 180mg.kg$^{-1}$ e 18,2 ± 1,2 no 600mg.kg$^{-1}$ e de ração: 8,7 ± 0,4 no grupo controle, 8,9 ± 0,4 no grupo lufenurona 180mg.kg$^{-1}$ e 8,9 ± 0,3 no 600mg.kg$^{-1}$.
FIGURA 6. (A) Desenvolvimento ponderal relativo (1º dia = 100%), (B) consumo relativo de água e (C) ração de ratas tratadas com 0, 180 e 600mg.kg\(^{-1}\) de lufenurona, por VO, no 1º dia de prenhez. A seta assinala o dia do tratamento. Dados expressos em média e erro padrão da média. \[n(0) = 10, n(180) = 8 \text{ e } n(600mg.kg^{-1}) = 12\]. \(P > 0,05\) (ANOVA de MR).
5.2.3 Desenvolvimento ponderal das ratas durante a lactação

A lufenurona não alterou o desenvolvimento ponderal normal das ratas durante a lactação (Figura 7). Houve um aumento de massa corporal em todos os grupos, mas não houve diferença estatisticamente significativa entre os grupos \((P= 0,48; \text{ANOVA de MR}) \). Das 30 ratas tratadas (10 no grupo controle; 8, no lufenurona 180mg.kg\(^{-1}\) e 12, no 600mg.kg\(^{-1}\)), houve um ganho, em gramas, em relação à massa corporal no início da lactação (média ± epm) de: 19,4 ± 4,1 no grupo controle (0mg.kg\(^{-1}\)), 15,7 ± 2,8 no grupo lufenurona 180mg.kg\(^{-1}\) e 12,3 ± 4,8 no 600mg.kg\(^{-1}\).

FIGURA 7. Desenvolvimento ponderal relativo das ratas (1º dia = 100%) tratadas com 0, 180 e 600mg.kg\(^{-1}\) de lufenurona, por VO, no 1º dia de prenhez e de lactação. A seta assinala o dia do tratamento. Dados expressos em média e erro padrão da média. [n(0) = 10, n(180) = 8 e n(600 mg.kg\(^{-1}\)) = 12]. \(P > 0,05 \) (ANOVA de MR).
5.2.4 Índices reprodutivos

A lufenurona administrada, por VO, no 1º dia de prenhez e no 1º de lactação, nas dosagens de 180 e 600mg.kg\(^{-1}\) não alterou significativamente (\(P = 0,44\); ANOVA e \(P = 0,82\); qui-quadrado, respectivamente) a média de fetos por fêmea e perdas pós-implantação (Tabela 5).

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Lufenurona (mg.kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Nº de ratas</td>
<td>10</td>
</tr>
<tr>
<td>Sítios de implantação</td>
<td>10 ± 0,38</td>
</tr>
<tr>
<td>Nº de filhotes/rata</td>
<td>10,10 ± 0,72</td>
</tr>
<tr>
<td>Perdas pós-implantação (%)</td>
<td>7,34</td>
</tr>
</tbody>
</table>

Sem diferenças significativas entre os grupos (\(P > 0,05\), ANOVA)

5.2.5 Massa relativa e histologia dos órgãos

A lufenurona não alterou de forma significativa a massa relativa do pulmão, fígado e rins, mas reduziu a do baço e coração das ratas tratadas, por VO, no 1º dia de prenhez e no 1º dia de lactação, nas dosagens de 180 e 600mg.kg\(^{-1}\) em comparação ao grupo controle (Tabela 6). A análise de variância de única via dos respectivos órgãos revelou: baço (\(P = 0,01\)), coração (\(P < 0,01\), fígado (\(P = 0,36\)), pulmão (\(P = 0,07\)), rim direito (\(P = 0,79\)) e rim esquerdo (\(P = 0,35\)). Os órgãos não apresentaram alterações histopatológicas.
TABELA 6. Massa relativa dos órgãos das ratas tratadas com 0, 180 e 600mg.kg\(^{-1}\) de lufenurona, por VO, no 1º dia de prenhez e no 1º dia de lactação. Dados expressos em número absoluto (ratas) e média e erro padrão da média (órgãos).

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Lufenurona (mg.kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Nº de ratas</td>
<td>10</td>
</tr>
<tr>
<td>Baço</td>
<td>0,21 ± 0,01</td>
</tr>
<tr>
<td>Coração</td>
<td>0,47 ± 0,02</td>
</tr>
<tr>
<td>Fígado</td>
<td>5,13 ± 0,12</td>
</tr>
<tr>
<td>Pulmão</td>
<td>0,60 ± 0,03</td>
</tr>
<tr>
<td>Rim direito</td>
<td>0,34 ± 0,01</td>
</tr>
<tr>
<td>Rim esquerdo</td>
<td>0,32 ± 0,01</td>
</tr>
</tbody>
</table>

* Diferença significativa em relação ao grupo controle (\(P < 0,05\), ANOVA de uma via, Bonferroni)

5.2.6 Dosagem das enzimas hepáticas

A lufenurona, na dosagem de 600mg.kg\(^{-1}\), provocou um aumento significativo na atividade da ALT (\(P = 0,02\)) e uma redução na atividade da FA (\(P < 0,01\)) em relação ao grupo controle e ao grupo que recebeu 180mg.kg\(^{-1}\) de lufenurona (Tabela 7).

TABELA 7. Níveis séricos da atividade da ALT e FA de ratas tratadas com lufenurona, por VO, no 1º dia de prenhez e no 1º dia de lactação. Dados expressos em número absoluto (ratas) e média e erro padrão da média (atividade enzimática).

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Lufenurona (mg.kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Nº de ratas</td>
<td>10</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>114,74 ± 10,95</td>
</tr>
<tr>
<td>FA (U/l)</td>
<td>204,53 ± 11,14</td>
</tr>
</tbody>
</table>

* Diferença significativa em relação ao grupo controle (\(P < 0,05\), ANOVA de uma via, Bonferroni)
** Diferença significativa em relação ao grupo controle e ao grupo lufenurona 180mg.kg\(^{-1}\) (\(P < 0,05\), ANOVA de uma via, Bonferroni)
5.2.7 Índices dos filhotes

A lufenurona não alterou de forma significativa os índices dos filhotes das ratas tratadas, em comparação ao grupo controle (Tabela 8). Com relação ao número de filhotes, massa corporal ao nascimento ($P = 0.44$, $P = 0.12$; ANOVA) e quanto a vitalidade, alterações macroscópicas externas e proporção de sexo ($P = 0.99$, $P = 1.0$ e $P = 0.32$; qui-quadrado) não houve diferenças entre os grupos.

TABELA 8. Índices dos filhotes de ratas tratadas com 0, 180 e 600mg.kg$^{-1}$ de lufenurona, por VO, no 1º dia de prenhez. Dados expressos em número absoluto (ratas e filhotes), percentual (vitalidade e alterações macroscópicas), média e erro padrão da média (massa corporal) ou proporção (macho/fêmea).

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Lufenurona (mg.kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Nº de ratas</td>
<td>10</td>
</tr>
<tr>
<td>Nº de filhotes</td>
<td>101</td>
</tr>
<tr>
<td>Vitalidade ao nascimento (%)</td>
<td>100</td>
</tr>
<tr>
<td>Massa corporal por ninhada (g)</td>
<td>6,09 ± 0,23</td>
</tr>
<tr>
<td>Alterações macroscópicas externas (%)</td>
<td>0</td>
</tr>
<tr>
<td>Proporção de sexo</td>
<td>0,6/1</td>
</tr>
</tbody>
</table>

Sem diferenças significativas entre os grupos ($P > 0.05$, ANOVA)

5.2.8 Desenvolvimento ponderal da progênies

A lufenurona não alterou o desenvolvimento ponderal normal (%) das progênies das fêmeas tratadas (Figura 8). Houve um aumento significativo de massa corporal para todos os grupos, mas não houve diferença estatisticamente significativa entre os grupos ($P = 0.24$, ANOVA de MR). O ganho de massa corporal dos filhotes, em gramas, foi de (média ± epm): 151,6 ± 6,8 no grupo controle (0mg.kg$^{-1}$), 159,5 ± 8,5 no grupo lufenurona 180mg.kg$^{-1}$ e 159,4 ± 8,3 no 600mg.kg$^{-1}$.
FIGURA 8. Desenvolvimento ponderal relativo dos filhotes (1º dia = 100%) nascidos de ratas tratadas com 0, 180 e 600mg.kg⁻¹ de lufenurona, por VO, no 1º dia de prenhez e no 1º dia de lactação. Dados expressos em média e erro padrão da média. [n(0) = 101, n(180) = 84 e n(600 mg.kg⁻¹) = 106]. P > 0,05 (ANOVA de MR).

5.2.9 Características de desenvolvimento geral e sexual das progêniess

A lufenurona administrada no 1º dia de prenhez e no 1º dia de lactação nas dosagens de 180 e 600mg.kg⁻¹ não interferiu significativamente no desenvolvimento geral e sexual dos filhotes em comparação ao grupo controle (Figuras 9 e 10). Verificou-se que tanto as características gerais como as sexuais se manifestaram em períodos correspondentes aos do grupo controle ou do controle histórico do Laboratório de Farmacologia do ICBS/UFRGS; não manifestando, portanto, diferença estatisticamente significativa.
FIGURA 9. Idade (dias) no aparecimento das características de desenvolvimento geral das progêniés de ratas tratadas com lufenurona e do grupo controle. [n(0) = 101, n(180) = 84 e n(600 mg.kg\(^{-1}\)) = 106]. Dados apresentados em percentual. \(P = 1 \) (Qui-quadrado).
FIGURA 10. Idade (dias) no aparecimento das características de desenvolvimento sexual das progêñies de ratas tratadas com lufenurona e do grupo controle. \(n(0) = 101, n(180) = 84 \) e \(n(600 \text{mg.kg}^{-1}) = 106 \). \(P = 1 \) (Qui-quadrado).
5.3 Hepatotoxicidade com a lufenurona

A lufenurona provocou um aumento da atividade da ALT quando o sangue foi coletado 72h após a administração, entretanto não modificou significativamente a atividade quando mensurado 24h após a administração (Tabela 9). Assim como não alterou significativamente \((P > 0,05) \) a atividade da FA, nem 24 e nem 72h após a administração. O CCl\(_4\), empregado como um controle positivo de fármaco hepatotóxico, provocou um aumento significativo da atividade da ALT \((P = 0,04) \), 24h após a administração e retornou a valores normais depois de 72h. A exemplo da lufenurona, o CCl\(_4\) não alterou significativamente \((P < 0,05) \) a atividade da FA, nem 24 e nem 72h após a administração.

A lufenurona não provocou hepatomegalia em ambos os intervalos de tempo, e a análise histopatológica revelou acúmulo de glicogênio, assim como no grupo controle. Já o CCl\(_4\) provocou degeneração gordurosa e hepatomegalia (Tabela 10) após o tratamento (Figura 13D).

TABELA 9. Níveis séricos da atividade da ALT e FA de ratas tratadas com água destilada, lufenurona (600mg.kg\(^{-1}\)) e CCl\(_4\) (1,98g.kg\(^{-1}\)). Dados expressos em média e erro padrão da média (atividade enzimática).

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Controle</th>
<th>Lufenurona</th>
<th>CCl(_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº de ratas</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tempo (h.)</td>
<td>72</td>
<td>24</td>
<td>72</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>63,8 ± 8,5</td>
<td>74,5 ± 8,2</td>
<td>135,7 ± 16,3**</td>
</tr>
<tr>
<td>FA (U/l)</td>
<td>109,9 ± 22,6</td>
<td>114,9 ± 17,1</td>
<td>211,2 ± 28,0</td>
</tr>
</tbody>
</table>

*Diferença significativa em relação ao grupo controle \((P < 0,05 - \text{ANOVA, Bonferroni}) \)

**Diferença significativa em relação ao grupo controle e ao grupo CCl\(_4\) 72h. \((P < 0,05 - \text{ANOVA, Bonferroni}) \)

5.3.1 Desenvolvimento ponderal e consumos relativos de água e de ração

A lufenurona, na dosagem de 600 mg.kg\(^{-1}\), não alterou o desenvolvimento ponderal normal das ratas (Figura 11A e 12A), nem 24 e nem 72h após a administração. Já o CCl\(_4\) provocou uma redução na massa corporal relativa \((P < 0,01, \text{ANOVA de MR}) \), tanto em 24h como em 72h após a administração. Das 5 ratas tratadas em cada
grupo, houve uma variação, em gramas, no ensaio 24h, em relação à massa corporal inicial (média ± epm) de: 0,7 ± 1,0 no grupo controle, -4,3 ± 2,7 no grupo lufenurona e -17,8 ± 2,5 no grupo CCl₄. Das 5 ratas tratadas em cada grupo, houve uma variação, em gramas, no ensaio 72h, em relação à massa corporal inicial (média ± epm) de: 6,6 ± 2,8 no grupo controle, 5,0 ± 2,6 no grupo lufenurona e -9,0 ± 2,7 no grupo CCl₄.

A lufenurona não interferiu no consumo relativo médio de água (Figuras 11B e 12B) e ração (Figuras 11C e 12C), nem 24 e nem 72h após a administração. O CCl₄ provocou uma redução significativa no consumo relativo médio de água ($P < 0,01$, ANOVA de MR) e de ração ($P < 0,01$, ANOVA de MR) 24h após a administração. Apresentou também uma queda significativa nos consumos de água e de ração (Figuras 12B e 12C) no ensaio de 72h (água: $P = 0,02$ e ração: $P = 0,03$, ANOVA de MR). As ratas tratadas apresentaram, no ensaio 24h, um consumo relativo médio (média ± epm) de água: 14,4 ± 1,9 no grupo controle, 16,3 ± 2,2 no grupo lufenurona e 12,2 ± 1,1 no grupo CCl₄ e de ração: 8,5 ± 0,4 no grupo controle, 8,9 ± 0,4 no grupo lufenurona e 7,9 ± 0,6 no grupo CCl₄. As ratas tratadas apresentaram, no ensaio 72h, um consumo relativo médio (média ± epm) de água: 15,1 ± 1,1 no grupo controle, 14,9 ± 2,0 no grupo lufenurona e 18,3 ± 1,8 no grupo CCl₄ e de ração: 8,4 ± 0,4 no grupo controle, 8,5 ± 0,5 no grupo lufenurona e 8,0 ± 0,6 no grupo CCl₄.
* Diferença significativa entre os grupos (CCl₄ e os demais) nos dias indicados

FIGURA 11. (A) Desenvolvimento ponderal relativo (1º dia = 100%), (B) consumo relativo de água e (C) ração nos 5 dias que precederam o tratamento com lufenurona (600mg.kg⁻¹), CCl₄ (1,98g.kg⁻¹) e água destilada, por VO. A seta assinala o dia do tratamento. Dados expressos em média e erro padrão da média.(n=5/grupo). P < 0,05 (ANOVA de MR).
FIGURA 12. (A) Desenvolvimento ponderal relativo (1º dia = 100%), (B) consumo relativo de água e (C) ração nos 8 dias que precederam e 3 dias que sucederam o tratamento com lufenurona (600mg.kg\(^{-1}\)) e CCl\(_4\) (1,98g.kg\(^{-1}\)), água destilada, por VO. A seta assinala o dia do tratamento. Dados expressos em média e erro padrão da média. \(P < 0,05\) (ANOVA de MR).

* Diferença significativa entre os grupos (CCl\(_4\) e os demais) nos dias indicados.
5.3.2 Massa relativa e histologia dos órgãos

A lufenurona não alterou a massa relativa da adrenal esquerda, baço, coração e rins, com exceção da adrenal direita ($P < 0,01$) no ensaio 24h após a administração. O exame histopatológico, salvo as alterações já referidas para o fígado (item 5.3), só revelou tumefação de córtex adrenal (Figura 14C) neste grupo. As alterações mais significativas apareceram no grupo controle positivo (CCl$_4$): baço congesto e fígado com degeneração gordurosa (Figura 13B e 13D) e degeneração hidrópica do rim e adrenais congestas (Figura 14B e 14D). A análise de variância dos respectivos órgãos revelou: coração (24h: $P = 0,05$ e 72h: $P = 0,18$), baço (24h: $P = 0,03$ e 72h: $P = 0,13$), rim direito (24h: $P = 0,28$ e 72h: $P = 0,05$), rim esquerdo (24h: $P = 0,13$ e 72h: $P = 0,07$), adrenal direita (24h: $P < 0,01$ e 72h: $P = 0,16$) e esquerda (24h: $P < 0,01$ e 72h: $P = 0,12$).
TABELA 10. Massa relativa dos órgãos das ratas tratadas com água destilada, lufenurona (600mg.kg\(^{-1}\)) e CCl\(_4\) (1,98g.kg\(^{-1}\)), por VO, no 5º dia do experimento. Dados expressos em número absoluto (ratas) e média e erro padrão da média (órgãos).

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Controle</th>
<th>Lufenurona</th>
<th>CCl(_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº de ratas</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Ensaio 24h

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Controle</th>
<th>Lufenurona</th>
<th>CCl(_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal direita</td>
<td>0,012 ± 0,00</td>
<td>0,019± 0,00*</td>
<td>0,019 ± 0,00*</td>
</tr>
<tr>
<td>Adrenal esquerda</td>
<td>0,013 ± 0,00</td>
<td>0,017 ± 0,00</td>
<td>0,024 ± 0,00*</td>
</tr>
<tr>
<td>Baço</td>
<td>0,35 ± 0,03</td>
<td>0,26 ± 0,02</td>
<td>0,36 ± 0,02**</td>
</tr>
<tr>
<td>Coração</td>
<td>0,33 ± 0,08</td>
<td>0,32 ± 0,00</td>
<td>0,29 ± 0,01</td>
</tr>
<tr>
<td>Fígado</td>
<td>4,10 ± 0,08</td>
<td>3,94 ± 0,13</td>
<td>4,34 ± 0,26</td>
</tr>
<tr>
<td>Rim direito</td>
<td>0,36 ± 0,00</td>
<td>0,35 ± 0,01</td>
<td>0,37 ± 0,01</td>
</tr>
<tr>
<td>Rim esquerdo</td>
<td>0,35 ± 0,01</td>
<td>0,34 ± 0,01</td>
<td>0,37 ± 0,01</td>
</tr>
</tbody>
</table>

Ensaio 72h

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Controle</th>
<th>Lufenurona</th>
<th>CCl(_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal direita</td>
<td>0,012 ± 0,00</td>
<td>0,016 ± 0,00</td>
<td>0,017 ± 0,00</td>
</tr>
<tr>
<td>Adrenal esquerda</td>
<td>0,013 ± 0,00</td>
<td>0,017 ± 0,00</td>
<td>0,019 ± 0,00</td>
</tr>
<tr>
<td>Baço</td>
<td>0,35 ± 0,03</td>
<td>0,38 ± 0,02</td>
<td>0,47 ± 0,06</td>
</tr>
<tr>
<td>Coração</td>
<td>0,33 ± 0,08</td>
<td>0,31 ± 0,01</td>
<td>0,31 ± 0,00</td>
</tr>
<tr>
<td>Fígado</td>
<td>4,10 ± 0,08</td>
<td>4,30 ± 0,24</td>
<td>5,17 ± 0,16***</td>
</tr>
<tr>
<td>Rim direito</td>
<td>0,36 ± 0,00</td>
<td>0,37 ± 0,01</td>
<td>0,39 ± 0,01</td>
</tr>
<tr>
<td>Rim esquerdo</td>
<td>0,35 ± 0,01</td>
<td>0,36 ± 0,01</td>
<td>0,38 ± 0,01</td>
</tr>
</tbody>
</table>

*Diferença significativa em relação ao grupo controle (P < 0,05; ANOVA, Bonferroni)
**Diferença significativa em relação ao grupo lufenurona (P < 0,05 - ANOVA, Bonferroni)
***Diferença significativa em relação ao grupo controle e lufenurona (P < 0,05 - ANOVA, Bonferroni)
FIGURA 13. Fotomicrografias de baços e fígados de ratas tratadas com 1,98 g.kg⁻¹ de CCl₄ e com água destilada, por VO. A- baço normal do grupo controle (obj. 10), B – baço congesto do grupo CCl₄ (obj. 40), C- fígado normal do grupo controle (obj. 10) e D - fígado com degeneração gordurosa do grupo CCl₄ (obj. 40).
FIGURA 14. Fotomicrografias dos rins e adrenais de ratas tratadas com 1,98g.kg⁻¹ de CCl₄ e 600mg.kg⁻¹ de lufenurona, por VO. A - rim normal (obj. 40), B - rim com degeneração hidrópica do grupo CCl₄ (obj. 40), C - adrenal com tumefação de córtex do grupo lufenurona (obj. 40) e D - adrenal congesta do grupo CCl₄ (obj. 10).
6 DISCUSSÃO

Os principais resultados deste trabalho foram: (I) a demonstração de que os antiparasitários Ivomec® injetável, à base de ivermectina, e Program® suspensão, à base de lufenurona, não apresentaram toxicidade reprodutiva em ratas Wistar e (II) que o Program® suspensão provocou agressão hepática, caracterizada pela elevação da ALT e também aumento da massa relativa da adrenal com tumefação de córtex.

A ivermectina, em dosagens de 4 e 12mg.kg\(^{-1}\), o que equivale a 10 e 30 vezes a maior dosagem terapêutica proposta para caninos e ratos, administrada, por via SC, no 6\(^{o}\) dia de prenhez, e a lufenurona, em dosagens de 180 e 600mg.kg\(^{-1}\), que equivale a 3 e 9 vezes a maior dosagem terapêutica proposta para dermatofitose canina, administrada por VO no 1\(^{o}\) dia de prenhez e no 1\(^{o}\) dia de lactação, não interferiram significativamente no desenvolvimento ponderal, nos consumos de água e ração, nas variáveis reprodutivas das ratas, no desenvolvimento dos fetos e nem no desenvolvimento pós-natal das respectivas progêñes. Entretanto, a lufenurona, no experimento de hepatotoxicidade, na dosagem de 600mg.kg\(^{-1}\) provocou agressão hepática, 72h após a administração, caracterizada pela elevação da ativação da ALT.

O fato de empregar medicamentos, respectivamente Ivomec® injetável e Program® suspensão, contendo os fármacos estudados, pode ser motivo de restrição uma vez que a composição é desconhecida: o veículo não é informado pelos fabricantes seja na bula ou na literatura técnica disponível (SINDAN, 2001). Além do mais, no presente caso, foi preciso confiar na concentração informada, uma vez que não foi feita a dosificação do fármaco na amostra empregada. Por outro lado, existe a vantagem de se estar avaliando o medicamento que efetivamente está à disposição dos clínicos.

Todo fármaco pode ser considerado um agente tóxico, dependendo das condições de exposição, como dose administrada ou absorvida, tempo e freqüência de exposição (doses únicas ou múltiplas) e a via pela qual é administrado (BARROS; DAVINO, 1996). Isto justifica o presente trabalho, já que os respectivos medicamentos estão sendo utilizados em altas dosagens. A dosagem de ivermectina, recomendada e
aprovada para caninos, é de 0,006 – 0,012mg.kg\(^{-1}\) para controle de dirofilariose (SINDAN, 2001). No entanto, alguns autores revelam a eficácia deste fármaco, em dosagens 17 e 33 vezes maior para o tratamento de sarnas em felinos e caninos, o mesmo ocorre com a lufenurona, recomendada e aprovada para caninos e felinos, na dosagem de 10mg.kg\(^{-1}\) e 30mg.kg\(^{-1}\) para o combate de pulgas e utilizada, em dosagens 6 e 9 vezes maior para o tratamento de dermatofitose (WILLENSÉ, 1998; ANDERSON, 1998).

A dosagem superior da ivermectina (12mg.kg\(^{-1}\)) utilizada neste trabalho foi semelhante à utilizada (10mg.kg\(^{-1}\)) pela Merck ([2001]), a qual demonstrou que a ivermectina provocou sinais de intoxicação como bradipnéia, sialorréia, ataxia e diminuição da atividade dos ratos, no entanto, ambos os experimentos se diferenciam pela via e pela frequência de administração (SC x VO e dose única x 12 dias). A toxicidade sistêmica do antiparasitário, com base nestes resultados, talvez ocorra somente com uma frequência maior de administração, apesar do longo período de permanência da ivermectina no organismo. Este foi um dos fatores que justificou, no presente trabalho, o uso de somente uma dose, já que apresenta efeitos por longo tempo, dispensando-se sucessivas administrações. Descarta-se a possibilidade dos sinais de intoxicação serem devido a via de administração, já que a VO apresenta algumas desvantagens com relação a parenteral. Apesar da VO ser o método mais comum de administração de fármacos, existem algumas desvantagens como limitação da absorção de algumas substâncias devido as suas características físicas, destruição de alguns fármacos pelas enzimas digestivas ou pelo baixo pH gástrico, irregularidades de absorção ou propulsão na presença de alimentos, além de serem biotransformados por enzimas hepáticas antes de alcançarem a circulação sistêmica (WILKINSON, 2003).

Os resultados obtidos no presente trabalho não revelaram aumento na prevalência de malformações nos fetos das ratas tratadas com ivermectina, mas houve menor prevalência de fontanelas aumentadas no grupo tratado com 12mg.kg\(^{-1}\) de ivermectina (18%), enquanto a prevalência nos fetos do grupo controle foi de 44%. Segundo Solecki et al. (2001), esta taxa de fontanelas aumentadas, que não é considerada uma malformação, mas uma variação do normal, também foi encontrada em outro estudo desenvolvido em nosso laboratório, utilizando linhagem de ratas da mesma colônia [comunicação pessoal].

Informação obtida baseada nos dados da dissertação da mestrandá Beatriz Bernardes Melo]
Não há uma explicação satisfatória para a menor prevalência da anormalidade na progênies das ratas tratadas com 12mg.kg\(^{-1}\) de ivermectina. Pode-se especular que uma pequena diferença na duração da prenhez, questão de algumas horas, seja significativa para a calcificação terminal das fontanelas, neste caso pode-se pensar, que no grupo tratado com a dosagem de 12mg.kg\(^{-1}\), por alguma razão, não controlável, houvesse um maior número de ratas que foram fecundadas no início do período escuro, o que poderia determinar diferença de até 12 horas na duração da prenhez quando as ratas foram sacrificadas. Em experimento feito pela Merck ([2001]) com a ivermectina, em dosagem de 10mg.kg\(^{-1}\)/dia, por VO, entre o 6\(^{o}\) e o 17\(^{o}\) dia de prenhez, alguns fetos apresentaram palato fendido, fato que não foi observado neste trabalho, mesmo utilizando uma dosagem superior (12mg.kg\(^{-1}\)). Entretanto, observamos uma frequência significativa de fetos exibindo variações esqueléticas como ossificação incompleta de crânio, fontanela aumentada e metatarso não-ossificado em todos os grupos, inclusive no controle, descartando-se então a possibilidade de ter sido provocada pela ivermectina. Existem controvérsias entre os autores com relação à classificação das anormalidades esqueléticas. Lork (1977) classifica os desvios de normalidade encontrados no esqueleto como: variações do normal, retardos do desenvolvimento do esqueleto e malformações. As variações individuais do normal consistem na ausência dos centros de ossificação esperados para o momento da “cesariana”, como por exemplo, das falanges terminais em ratos. Retardos do desenvolvimento ósseo consistem na ausência dos centros de ossificação em estruturas bilaterais ou na presença de forma e/ou tamanho claramente sugestivos de um estágio precoce de desenvolvimento. Nesta classe estão incluídas as ossificações incompletas dos ossos do crânio e fontanelas aumentadas. Em ratos, a ossificação incompleta ocorre devido a um atraso de desenvolvimento, independente da estrutura afetada (SOLECKI et al., 2001). Para Solecki et al. (2001), as variações são atrasos de desenvolvimento e as malformações são efeitos permanentes que afetam a saúde e a sobrevivência das espécies. Para Lork (1977), as malformações do esqueleto consistem, por sua vez, na ausência parcial e total de ossos importantes, encurtamentos, arqueamentos, assimetrias, fusões, fendas ou duplicidade (espinha bifida), o que ocorreu com uma frequência muito baixa neste trabalho, independente da administração de ivermectina. De qualquer forma, pode-se concluir que a ivermectina, presente no antiparasitário Ivomec® injetável, é um fármaco seguro quando administrado, por via SC, a ratas no 6\(^{o}\) dia de prenhez em dosagens de até 12mg.kg\(^{-1}\).
Os resultados, obtidos no presente trabalho, revelaram que a lufenurona não provocou toxicidade sistêmica e reprodutiva, quando administrada, por VO, em dosagens de até 600mg.kg\(^{-1}\) no 1° dia de prenhez e no 1° dia de lactação. As variáveis reprodutivas avaliadas não apresentaram diferenças estatisticamente significativas. Contudo, quando foi avaliada a massa relativa dos órgãos, como baço e coração, apresentaram valores, discretos, mas significativamente menores do que os das ratas controle. O baço reduziu, em ambas as dosagens empregadas (180 e 600mg.kg\(^{-1}\)), cerca de 19%, enquanto o coração, cerca de 21% em relação à massa relativa do grupo controle. Não há justificativa e nem o significado desta redução são entendidos. Poder-se-ia imaginar que o baço tenha a sua massa relativa reduzida, devido a um quadro de metemoglobinemia, já que segundo Tasheva e Hristeva (1992), alguns derivados do grupo das benzoilfeniluréias provocam metemoglobinemia. Este quadro se caracteriza pela oxidação do ferro ferroso da hemoglobina em estado férrico, o qual é incapaz de transportar oxigénio. Segundo Swenson (1996), o baço é um importante reservatório de sangue, o qual se contrai para expulsão de eritrócitos em casos de baixa oxigenação dos tecidos. É possível que a contração também ocorra em casos de metemoglobinemia e consequentemente redução da massa relativa. Estas ratas não apresentaram sinais clínicos de metemoglobinemia. Segundo Rieder (1990), esta patologia, induzida por fármacos, é habitualmente uma afeção assintomática, mas se for grave com níveis superiores a 60 e 70% está associada a colapso, coma e óbito. Os animais afetados apresentam cianose grave e ao exame o sangue apresenta coloração vermelho-escura. A outra possibilidade desta redução esplênica seria devido à morte de linfócitos provocada pela lufenurona, já que o baço e os nódulos linfáticos sintetizam este tipo de célula (NAVARRO, 1994). Alguns derivados das benzoilfeniluréias apresentam atividades anti-tumorais em experimentos de leucemia, com ação citotóxica sobre os linfócitos (OKADA et. al., 1998). Contudo, o exame histopatológico do baço não revelou alterações no parênquima. Estudos adicionais são necessários para determinar o verdadeiro mecanismo de ação da lufenurona sobre o órgão. A lufenurona, no ensaio de hepatotoxicidade, provocou aumento da massa relativa das adrenais, com tumefação de córtex, este efeito também foi observado em outro teste, com ratos, que receberam dosagens de 1000mg.kg\(^{-1}\) de lufenurona, mas não foi observado nos que receberam dosagens inferiores a 100mg.kg\(^{-1}\), por VO, diariamente, por 3 meses (CIBA-GEIGY, [2002]). O aumento da atividade sérica da ALT sugere agressão hepática provocada pela lufenurona, mas o exame histopatológico não revelou alterações significativas e
nem as ratas tratadas perderam massa corporal ou deixaram de se alimentar (consumo de água e ração), o que sim foi observado quando as ratas foram tratadas com CCl₄, um fármaco hepatotóxico de referência. A elevação das aminotransferases no soro pode ocorrer mesmo após uma agressão celular mínima (BORDES, 2001). Segundo MATTENHEIMER e FRIEDEL (1977); DIEDERICHS et al. (1979); LINDENA et al. (1979) apud KANEKO (1997), as células não precisam morrer para liberar enzimas, somente um curto período de hipóxia é suficiente para romper a integridade da membrana celular, permitindo a liberação das enzimas para o plasma. Isto justifica a presença do aumento da enzima hepática, sem uma lesão microscópica no parênquima. Além de que, uma pequena elevação da atividade da ALT não deve ser considerada importante, pois uma das principais funções hepáticas é detoxificação e, neste caso, é comum que o órgão sofra algum tipo de lesão (BUSH, 1991). Um consenso internacional estabeleceu o termo agressão hepática quando ocorre um aumento da atividade de ALT e FA superior a 2 vezes o valor de referência, já o termo lesão hepática deve ser usado, somente quando existir, concomitante à elevação enzimática, alteração de parênquima hepático (BORDES, 2001). Com relação ao tempo, no ensaio de hepatotoxicidade, a lufenurona apresentou elevação da atividade da ALT somente 72h após a administração, ou seja, teve uma ação mais lenta e menos agressiva a nível hepático, com um aumento 2 vezes maior que o controle, sem alteração do parênquima. Já o CCl₄, por ser uma substância hepatotóxica de ação severa e aguda, a lesão celular é tão grave quanto de início rápido, em menos de 30 minutos, há um declínio na síntese de proteínas plasmáticas (COTRAN et al., 1996). Este fármaco provocou a elevação da atividade de ALT 24h após a administração, com um aumento 4 vezes maior que o controle, além de degeneração gordurosa na região centrolobular. Com relação a enzima FA, apesar de ser uma enzima indicadora de doenças hepáticas agudas e crônicas, níveis elevados são indicadores de colestase, de necrose hepática e inflamação, esta última induzida por algumas drogas como barbitúricos e anticonvulsivantes (BUSH, 1991). Com relação a redução da sua atividade na maior dosagem de lufenurona, comparado com a menor dosagem, a justificativa se dá em relação a ampla flutuação na atividade normal da enzima (KANEKO et al., 1997). Como os limites de referência para FA, em ratos, são extensos (FA - < 267U/l; KANEKO, 1997), há uma limitação no valor diagnóstico do teste. Além de que a diminuição da atividade enzimática não tem significado clínico (BUSH, 1991), a não ser em casos de degeneração celular grave, no qual ocorre uma perda da função celular, o
que não foi observado neste caso. Existem enzimas mais específicas que a FA para
identificar alterações no fígado, como a OCT e a SDH, esta última é a enzima mais
sensível para detectar lesões hepáticas em ratos, mas a sua atividade é instável e declina
rapidamente no soro (KANEKO, 1997).

Dos resultados obtidos com a administração da lufenurona pode-se concluir que
o fármaco, presente no antiparasitário Program® suspensão é seguro, quando
administrado, por VO, a ratas no 1º dia de prenhez e no 1º dia de lactação, mesmo em
dosagens tão elevadas como 600mg.kg⁻¹. O aumento significativo da atividade da ALT
e não confirmado pela avaliação histopatológica precisa ser melhor avaliado.

O rato é uma espécie que, apesar de muito utilizada na investigação científica,
incluindo a pesquisa pré-clínica de fármacos e medicamentos, é relativamente resistente
à maioria dos fármacos. Outras espécies de animais domésticos e, em particular, os de
estimação podem ser mais suscetíveis à intoxicações. A transposição destes resultados
para várias espécies domésticas deve ser feita considerando esta característica.

Do conjunto de resultados pode-se concluir que a ivermectina/ Ivomec®
injetável e a lufenurona/ Program® suspensão são fármacos/ medicamentos bastante
seguros para serem usados nas dosagens terapêuticas aprovadas pelos órgãos
competentes, mesmo em fêmeas que, por ignorância do estado de prenhez ou por
necessidade, em caso de infestações significativas, são ou precisam eventualmente ser
tratadas durante este período como, também, durante a lactação. O emprego de
dosagens muito acima das recomendadas pelo fabricante e pela literatura (uso extra-
bula), como está acontecendo nos casos de sarnas em caninos e felinos com a
ivermectina ou de dermatofitose com a lufenurona também parece ser seguro quando o
uso é eventual ou ocasional como empregado no presente trabalho. O uso diário por
longos períodos, que alcança meses no caso da ivermectina contra sarna demodécica ou
o uso crônico para tratamento de dermatofitose, no caso da lufenurona, não podem ser
considerados seguros com base nos resultados obtidos e justifica uma criteriosa
avaliação da relação risco/benefício por parte do clínico responsável pela decisão.
7 CONCLUSÕES

O antiparasitário Ivomec® injetável, à base de ivermectina, administrado, por via SC, no 6º dia de prenhez nas dosagens de 4 e 12mg.kg⁻¹ em ratas Wistar, não interferiu no desenvolvimento ponderal, consumo relativo de água e ração, bem como nas variáveis reprodutivas das ratas tratadas, assim como não provocou teratogenia nos fetos expostos, por via uterina. Portanto, considera-se o medicamento seguro para uso em ratas prenhes, administrando uma única dosagem (no 6º dia de prenhez) tão alta quanto 30 vezes a dosagem terapêutica para ratos.

O antiparasitário Program® suspensão, à base de lufenurona, administrado, por VO, no 1º dia de prenhez e no 1º dia de lactação nas dosagens de 180 e 600mg.kg⁻¹ em ratas Wistar, não interferiu no desenvolvimento ponderal, consumo relativo de água e ração, bem como nas variáveis reprodutivas das ratas tratadas, assim como não alterou o desenvolvimento geral e sexual das progêñies expostas por via uterina e leite materno. Portanto, considera-se o medicamento seguro para uso em ratas prenhes e lactantes, administrando 2 dosagens, com intervalo de 21 dias, tão altas quanto 9 vezes a dosagem terapêutica para tratamento de dermatofitose em caninos.

O antiparasitário Program® suspensão, à base de lufenurona, administrado por VO na dosagem de 600mg.kg⁻¹, em ratas Wistar, em comparação ao CCl₄, substância reconhecidamente hepatotóxica, em ambos os intervalos de tempo, não interferiu no desenvolvimento ponderal, consumo relativo de água e ração. No ensaio 24h, provocou aumento da massa relativa da adrenal, com tumefação de córtex, e, no ensaio 72h, provocou aumento da atividade da ALT, demonstrando uma agressão hepática.
REFERÊNCIAS BIBLIOGRÁFICAS

CIBA-GEIGY. *Technical Summary for Registration Program*. [2002].

OHI, M. Efeitos reprodutivos e tóxicos do fipronil (Frontline® Top-SpotTM) em ratos. 2002. 73f. Dissertação (Mestrado em Ciências Biológicas) – Faculdade de veterinária, Universidade Federal do Paraná, Curitiba.

