Strengthening the open cluster distance scale via VVV photometry*

D. Majaess¹, D. Turner¹, C. Moni Bidin², D. Geisler³, J. Borrissova⁴, D. Minniti³,⁴,⁵, C. Bonatto⁶, W. Gieren², G. Carraro⁸, R. Kurtev⁷, F. Mauro², A.-N. Chene²,⁷, D. Forbes¹⁰, P. Lucas⁶, I. Dékány², R. K. Saito¹, and M. Soto¹¹

¹ Department of Astronomy and Physics, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
e-mail: dmajaess@cygnus.smu.ca
² Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción, Chile
³ Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
⁴ Vatican Observatory, 00120 Vatican City State, Italy
⁵ Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001, USA
⁶ Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
⁷ Departamento de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Ave. Gran Bretaña 1111, Playa Ancha, Casilla 5030, Valparaíso, Chile
⁸ European Southern Observatory, Ave. Alonso de Córdova 3107, Casilla 19, 19001 Santiago, Chile
⁹ Departamento de Astronomía, Universidad Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500 Porto Alegre 91501-970, RS, Brazil
¹⁰ Department of Physics, Sir Wilfred Grenfell College, Memorial University, Corner Brook, Newfoundland A2H 6P9, Canada
¹¹ Departamento de Física, Universidad de La Serena, Cisternas 1200 Norte, La Serena, Chile

Received 9 December 2011 / Accepted 18 December 2011

ABSTRACT

Approximately 14% of known Galactic open clusters possess absolute errors ≤ 20% as evaluated from n ≥ 3 independent distance estimates, and the statistics for age estimates are markedly worse. That impedes such diverse efforts as calibrating standard candles and constraining masses for substellar companions. New data from the VVV survey may be employed to establish precise cluster distances with comparatively reduced uncertainties (≤ 10%). This is illustrated by deriving parameters for Pismis 19 and NGC 4349, two pertinent open clusters which hitherto feature sizable uncertainties (60%). Fundamental parameters determined for Pismis 19 from new VVV JHK photometry are d = 2.40 ± 0.15 kpc, (EJ−H) = 0.34 ± 0.04, and log τ = 9.05 ± 0.10, whereas for NGC 4349 the analysis yielded d = 1.63 ± 0.13 kpc, (EJ−H) = 0.09 ± 0.02, log τ = 8.55 ± 0.10. The results exhibit a significant (≥ 5×) reduction in uncertainties, and indicate that: i) existing parameters for the substellar object NGC 4349 127b require revision, in part because the new cluster parameters imply that the host is 20% less-massive (M/ΔM ∼ 3.1); ii) R Cru is not a member of NGC 4349 and should be excluded from period-Wesenheit calibrations that anchor the distance scale; iii) and results for Pismis 19 underscore the advantages gleaned from employing deep VVV JHK data to examine obscured (A_v ∼ 4) and differentially reddened intermediate-age clusters.

Key words. techniques: photometric – Hertzsprung-Russell and C-M diagrams – dust, extinction – stars: distances

1. Introduction

Approximately 30% of the 395 open clusters featuring n ≥ 3 independent distance estimates exhibit absolute errors ≥ 20% (Paunzen & Netopil 2006, their Fig. 2). There are ≥ 2 × 10³ cataloged Galactic open clusters (Dias et al. 2002), implying that merely ∼ 14% of the known sample possess errors ≤ 20% as evaluated from three distance estimates. The uncertainties permeate into analyses which rely on the cluster zero-point, such as the calibration of any constituent standard candles or substellar companions (Lovis & Mayor 2007; Majaess et al. 2011b). Consider that published parameters for NGC 4349 span d = 900–2200 pc and τ = 0.1–0.6 Gyr (Sect. 3.2). Yet physical parameters for the substellar companion to TYC 8975-2601-1 (Lovis & Mayor 2007; Kashyap et al. 2008) rely on those inferred for the host from cluster membership (NGC 4349). Furthermore, the nearer distance and younger age for NGC 4349 potentially imply cluster membership for the classical Cepheid R Cru, which lies within the cluster’s corona. Establishing cluster membership would enable the subsequent calibration of Cepheid period-luminosity and period-Wesenheit relations (Turner 2010). Such functions bolster efforts to establish extragalactic distances and zero-point the SNe Ia scale (e.g., Pietrzyński & Gieren 2004).

The aforementioned examples underscore the broad ramifications of an uncertain cluster scale. Admittedly, age estimates for open clusters are less reliable since a third exhibit absolute errors > 50% (Paunzen & Netopil 2006, n ≥ 3), and presumably the statistics worsen for obscured clusters near the Galactic plane.

In this study, new VVV (VISTA Variables in the Vía Láctea) JHK photometry is employed to illustrate the marked improvement that can be achieved vis à vis open cluster distances. Two important clusters featuring particularly discrepant published parameters are examined, namely Pismis 19 and NGC 4349. Distances for the clusters display a ~ 60% spread and individual uncertainties of ~ 30%. Efforts to secure precise parameters for Pismis 19 via optical photometry have been complicated by differential reddening and A_v ∼ 4 mag of obscuring dust. Parameters for Pismis 19 and NGC 4349 derived here exhibit a marked (≥ 5×) reduction in uncertainties (Sect. 3), and highlight

* Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179.B-2002.
Fig. 1. A comparison between 2MASS and VVV $J-H$ photometry for the regions encompassing Pismis 19 and NGC 4349. A 1:1 correlation (red line) exists to within the uncertainties. The data for Pismis 19 were deliberately offset from zero for presentation purposes. Pertinent details regarding the pipeline employed here to process the VVV data are described in Moni Bidin et al. (2011) and Mauro et al. (in prep.).

the advantages of using VVV data to determine reliable cluster distances and compliment existing efforts.

2. VVV photometry

The VVV survey aims to establish precise multi-epoch JHK_s photometry for fields in the Galactic bulge and near the Galactic plane ($l = 295 -10^\circ$, Minniti et al. 2010; Catelan et al. 2011; Saito et al. 2011). VVV images exhibit increased angular resolution relative to 2MASS, and extend ~4 mag fainter for Galactic disk stars. The deep JHK_s photometry facilitates isochrone fitting by revealing the target cluster’s evolutionary morphology, which is particularly important when investigating highly reddened clusters. The VVV survey will provide standardized JHK_s photometric standards. A similar survey tied to Johnson-Cousins $UBVRI$ photometry is desirable. U-band photometry is particularly challenging to standardize and zero-point errors are common (Sect. 3.2, see also Cousins & Caldwell 2001).

However, UBV color–color analyses permit crucial dereddening for younger stars.

In summary, the VVV survey is aptly tailored to foster cluster research (Minniti et al. 2011; Borissova et al. 2011; Moni Bidin et al. 2011; Majaess et al. 2011b). Admittedly, acquiring precise and standardized $UBVJHK_s$ photometry is ideal, and enables the characterization of potential systemic errors. UBV data by Turner/Forbes (unpublished) and Carraro (2011, in press) are employed to corroborate parameters determined via the VVV photometry.

3. Analysis

3.1. Pismis 19

Pismis 19 is a heavily reddened open cluster (Piatti et al. 1998; Carraro & Munari 2004). The cluster’s non-symmetric appearance in optical images is indicative of differential reddening. Piatti et al. (1998) and Carraro & Munari (2004) acquired $BVJHK_s$ photometry for Pismis 19 stars. However, separate conclusions were reached regarding the cluster’s fundamental parameters. Piatti et al. (1998) determined the following: $E(B-V) = 1.45 \pm 0.10$, $d = 2.40 \pm 0.88$ kpc, $\tau = 1.0 \pm 0.2$ Gyr, whereas Carraro & Munari (2004) obtained $E(B-V) = 1.48 \pm 0.15$, $d = 1.5 \pm 0.4$, $\tau = 0.8$ Gyr. The redenning and distance agree within the mutual uncertainties, however, the individual uncertainties are large owing to the challenging task of analyzing highly obscured clusters solely via optical photometry. Carraro (2011) built upon Piatti et al. (1998) and Carraro & Munari (2004) analyses by obtaining deeper photometry, and derived $d = 2.5 \pm 0.5$ kpc.

Individual redenngs for stars in Pismis 19 were determined as follows. Any point on the dereddening line (dl) for the ith star is given by: $(J-H) = E_{J-H}/E_{H-K_s} \times (H-K_s)_{0} + b$; $b = (J-H) - E_{J-H}/E_{H-K_s} \times (H-K_s); (J-H)_{dl} = E_{J-H}/E_{H-K_s} \times (H-K_s)_{dl} + b$. The intercept between the dereddening line and the intrinsic relation was determined by minimizing the difference as a function of $(H-K_s); ((J-H)_{dl} - (J-H))_{0} = E_{J-H}/E_{H-K_s} \times (H-K_s)_{0} + (J-H) - E_{J-H}/E_{H-K_s} \times (H-K_s)_{0} - (J-H); E_{J-H}/E_{H-K_s}$ characterizing dust along the line of sight was derived by tracking deviations of red clump stars from their mean intrinsic color owing to extinction. The mean intrinsic color was adopted from Majaess et al. (2011b), who inferred the result from nearby red clump stars ($d \leq 50$ pc) with revised Hipparcos parallaxes (van Leeuwen 2007). The reddening vector determined from red clump stars is $E(J-H)/E(H-K_s) = 2.02$.

$L4$, page 2 of 4
That result agrees with a determination for the region from 2MASS photometry (Straižys & Laugalytė 2008). A reddening diagram was subsequently compiled (Fig. 2), and the mean reddening is $E(J − H) = 0.34 ± 0.04$. The cluster stars terminate near F2 according to the intrinsic JHK_s relation of Straižys & Lazauskaitė (2009).

A color–magnitude diagram was compiled for Pismis 19 stars surrounding J2000 coordinates of 14:30:40.54–60:53:32.2 (Fig. 2). A log $\tau = 9.05 ± 0.10$ Padova isochrone (Bonatto et al. 2004) was adopted based on the reddening and spectral types inferred (Fig. 2), and since that age provides an evolutionary track which matches cluster members ranging from M0 dwarfs to evolved stars. A precise fit was obtained owing to several factors. First, two of three free parameters associated with isochrone fitting were constrained by the color–color analysis, namely the reddening and age (spectral type at the turnover) were constrained by the color–color analysis, namely the reddening and age (spectral type at the turnover) were constrained. Second, field star contamination was mitigated since the surface density of cluster members is an order of magnitude larger, and furthermore, the cluster members occupy a heavily reddened locus separated from less-reddened field stars (Fig. 2). Lastly, the deep VVV photometry provided excellent anchor points for isochrone fitting.

The final parameters for Pismis 19 are: $d = 2.40 ± 0.15$ kpc, $(E(J − H)) = 0.34 ± 0.04$, and log $\tau = 9.05 ± 0.10$. The distance is tied to a ratio of total to selective extinction (R) derived by Majaess et al. (2011a; see also Bonatto et al. 2004, and references therein). The distance derived here agrees with the latest estimate from optical photometry (Carraro 2011).

3.2. NGC 4349

Kholopov (1956) and Kraft (1957) noted that the 5.8d classical Cepheid R Cru may be a member of NGC 4349. That assessment was based in part on the Cepheid’s proximity and brightness relative to cluster members. Cepheids are typically among the foremost evolved members of their host clusters. Lohmann (1961) employed UBV photographic photometry to derive cluster parameters of: $d = 1700$ pc and $\tau = 600$ Myr. Fernie (1963) obtained photoelectric BV photometry from the Cape Observatory and established a cluster distance of $d = 900$ pc, for $E(B − V) = 0.31$. The distance to NGC 4349 cited by Fernie (1963) is approximately half that derived by Lohmann (1961). Fernie (1963) concluded that R Cru is unassociated with NGC 4349 since the Cepheid lies towards the cluster’s periphery. Cluster Cepheids known during that era had been discovered near the cluster center (e.g., S Nor/NGC 6087). Incidentally, the distance to NGC 4349 established by Fernie (1963) is consistent with that inferred for R Cru from present day period-Wesenheit relations (Majaess et al. 2011b). Lindoff (1968) revised the Lohmann (1961) age for NGC 4349 downward to log $\tau = 8.04$. Loktin & Matkin (1994) computed the following properties for NGC 4349 based on a reanalysis of existing photometry: $d = 2176$ pc, $E(B − V) = 0.384$, and log $\tau = 8.315$. In sum, published parameters for NGC 4349 span $d = 900$–2200 pc.

A reddening vector of $(E(J − H)/E(H − K_s)) = 2.04$ was determined from red clump stars along the line of sight (see also Straižys & Laugalytė 2008). The reddening vector was subsequently adopted to establish a reddening of $(E(J − H)) = 0.09 ± 0.02$. Stars catalogued by Lohmann (1961) as likely cluster members were employed to derive that result. New photoelectric UBV photometry obtained for stars in NGC 4349 were likewise used to constrain the cluster reddening, and age. A comparison between that photoelectric UBV photometry and the photographic photometry of Lohmann (1961) reveals the latter is offset from the standard system: $B − V = (1.02 ± 0.02) \times (B − V)_Lohm = 0.02 ± 0.02$; $U − B = (0.96 ± 0.02) \times (U − B)_Lohm + 0.09 ± 0.01$; $V = (−0.015 ± 0.03) \times (B − V)_Lohm + 0.05 ± 0.02 + V_Lohm$. The offset may partly explain the difference between the distances inferred from the UBV photometry of Lohmann (1961) and the present analysis. Applying an intrinsic UBV color–color relation to the corrected data yields a reddening of $(E(B − V)) = 0.32 ± 0.03$. The canonical extinction law was employed, and may be refined once spectroscopic observations are available. Stars in NGC 4349 terminate near B8-A0 according to the intrinsic JHK_s and UBV relations (e.g., Straižys & Lazauskaitė 2009; Turner 2011). Published reddenings for R Cru (Fernie 1990) are nearly half that derived for the cluster, implying that the Cepheid lies in the foreground. That is consistent with the Cepheid’s parameters as inferred from the latest period-Wesenheit relations (e.g., Benedict et al. 2007), which indicate that R Cru is less than 1 kpc distant.

A color–magnitude diagram for NGC 4349 is shown in Fig. 3. A log $\tau = 8.55 ± 0.10$ Padova isochrone (Bonatto et al. 2004) was adopted based on the reddening and spectral types inferred from the color–color diagram, and since that age provides an evolutionary track which aptly matches both bluer and redder evolved members. NGC 4349 features evolved stars

1 The coordinates cited for the cluster center in simbad require updating.

2 Obtained with the 0.6 m Helen Sawyer Hogg Telescope which was stationed at Cerro Las Campanas, Chile.
brighter than the saturation limit of the VVV survey. Therefore, \(JHK_s \) photometry for these stars were taken from 2MASS. The color–magnitude diagram for NGC 4349 was restricted to stars within \(r < 1.2' \). Seven evolved red stars beyond that radius were added to the CMD for NGC 4349.

References

Carraro, G., & Munari, U. 2004, MNARS, 347, 625
Claria, J., & Lapasset, E. 1989, MNARS, 241, 301
Fernie, J. D. 1963, The Observatory, 83, 33
Lindoff, U. 1968, Arkiv for Astronomi, 5, 1
Klopovich, P. N. 1956, Peremennye Zvezdy, 11, 325
Kajaffi, C., Bonatto, C., Lane, D., & Kraicie, T. 2011a, JAAVSO, 39, 219
Pietrzyński, G., & Gieren, W. 2004, Variable Stars in the Local Group, IAU Colloq, 310, 87
Saijys, V., & Laugals, V. 2008, Baltic Astron., 17, 253
Saijys, V., & Laugals, V. 2008, Baltic Astron., 17, 253
Turner, D. G. 2011, RMxAA, 47, 127

4. Conclusion

VVV \(JHK_s \) observations may be employed to help establish precise cluster distances that feature comparatively reduced uncertainties (≤10%). That is illustrated by deriving fundamental parameters for Pismis 19 and NGC 4349, two important clusters which hitherto exhibit sizeable uncertainties (60%, Sects. 3.1 and 3.2). A precise distance determination for Pismis 19 from optical photometry was hampered in part by significant reddening (Fig. 2, \(\Delta \tau \sim 4 \)). The existing ambiguity surrounding the distance to NGC 4349 ensured that the pertinence of invaluable putative constituents were mitigated (i.e., the classical Cepheid R Cru and a substellar companion for the member TYC 8975-2601-1). Parameters derived for Pismis 19 are: \(d = 2.40 \pm 0.15 \) kpc, \((E(J-H)) = 0.34 \pm 0.04, \) \(\log \tau = 9.05 \pm 0.10 \) (Fig. 2), whereas NGC 4349 exhibits \(d = 1.63 \pm 0.10 \) kpc, \((E(J-H)) = 0.09 \pm 0.02, \) \(\log \tau = 8.55 \pm 0.10 \) (Fig. 3). The nature of the VVV survey ensured that the revised results, which have pertinent ramifications, compliment existing estimates and display a marked improvement (≥5x) in precision. New VVV \(JHK_s \) for stars in NGC 4349 and Pismis 19 imply that: existing physical parameters derived for NGC 4349 127b need to be redetermined in part since the mass for the host star was revised downward to \(M/L \sim 3.1 \) (Sect. 3.2); the classical Cepheid R Cru is not a member of NGC 4349 (Sect. 3.2); and VVV \(JHK_s \) photometry is particularly suited for constraining parameters of obscured and differentially reddened intermediate-age clusters (e.g., Pismis 19, Fig. 2).

The VVV and UKIDSS surveys (Lucas et al. 2008; Minniti et al. 2010) may be employed to achieve significant gains toward strengthening the open cluster distance scale. However, considerable work remains, and improvements in the pipelines used to process the data are inevitable given the nascent nature of the aforementioned surveys.

Acknowledgements. D.M. is grateful to the following individuals and consor- tiu whose efforts lie at the foundation of the research: 2MASS, P. Stetson (DAOPHOT), W. Lohmann, WEBDA (E. Paunzen), DAML (W. Dias), C. Lovis, M. Mayor, CDS, arXiv, and NASA ADS. We gratefully acknowledge use of data from the ESO Public Survey programme ID 179.B-2002 taken with the VLT telescope, the Cambridge Astronomical Survey Unit, and funding from the FONDAP Center for Astrophysics 15010003, the BASAL CATA Center for Astrophysics and Associated Technologies PFB-06, the MILENO Milky Way Millennium Nucleus from the Ministry of Economics ICM grant P07-021-F, and Proyecto FONDECYT Regular 1090213. W.G., C.M.B., and D.G. are grateful for support from the Chilean Center for Astrophysics FONDAP 15010003 and the BASAL Center of Astrofisica y Tecnologias Atmicas (CATA) PFB-06/2007. R.K. acknowledges support from Proyecto DIU23/2009, Universidad de Valparaíso. R.S. acknowledges financial support from CONICYT through Gemini Project No. 32080016.

Fig. 3. Color–magnitude diagrams constructed for NGC 4349 and an adjacent comparison field using VVV/2MASS \(JHK_s \) photometry. The circled dot near the tip of the giant branch is TYC 8975-2606-1, which hosts a substellar companion (Lovis & Mayor 2007). To mitigate contamination the CMDs feature stars within \(r < 1.2' \). Seven evolved red stars beyond that radius were added to the CMD for NGC 4349.