Soluções de equações advectivo-difusivas utilizando Split, série geométrica e transformação de Bäcklund

View/ Open
Date
2007Author
Advisor
Academic level
Doctorate
Type
Abstract in Portuguese (Brasil)
No trabalho proposto são apresentados dois novos métodos para a obtenção de soluções de equações diferenciais parciais. O primeiro fornece soluções exatas para problemas difusivos transientes e o segundo mapeia as soluções obtidas em novas soluções para equações diferenciais parciais não-lineares. As soluções dos problemas difusivos são expressas como séries geométricas truncadas, enquanto os mapeamentos são obtidos através do emprego de transformações de Bäcklund. As principais características ...
No trabalho proposto são apresentados dois novos métodos para a obtenção de soluções de equações diferenciais parciais. O primeiro fornece soluções exatas para problemas difusivos transientes e o segundo mapeia as soluções obtidas em novas soluções para equações diferenciais parciais não-lineares. As soluções dos problemas difusivos são expressas como séries geométricas truncadas, enquanto os mapeamentos são obtidos através do emprego de transformações de Bäcklund. As principais características das formulações propostas são o caráter analítico das soluções obtidas e o baixo custo computacional requerido para efetuar as operações envolvidas. Simulações numéricas são apresentadas. ...
Abstract
In this work two analytical methods for solving partial differential equations are proposed. The first method furnishes exact solutions for unsteady diffusion problems and the second one performs mappings which converts the solutions obtained into new exact solutions for nonlinear partial differential equations. The solutions for the diffusion problems are written as truncated geometric series and the mappings are obtained by means of Bäcklund transformations. The main features of the proposed ...
In this work two analytical methods for solving partial differential equations are proposed. The first method furnishes exact solutions for unsteady diffusion problems and the second one performs mappings which converts the solutions obtained into new exact solutions for nonlinear partial differential equations. The solutions for the diffusion problems are written as truncated geometric series and the mappings are obtained by means of Bäcklund transformations. The main features of the proposed formulations are the analytical character of the solutions obtained and the low computational cost demanded to carry out the calculations. Numerical results are reported. ...
Institution
Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia Mecânica.
Collections
-
Engineering (7491)Mechanical Engineering (827)
This item is licensed under a Creative Commons License
